[Effets d'irradiation dans des alliages concentrés et des matériaux complexes : équilibre et cinétique des systèmes]
Quelle organisation de la matière résiste à l'irradiation, suivant les conditions d'irradiation ? Comment caractériser ces dernières ? Nous résumons les progrès réalisés au cours des trois dernières décennies, dans la limite où les effets d'irradiation se réduisent aux collisions nucléaires. Dans les cas simples (structure définie par un paramètre d'ordre scalaire) on peut construire un potentiel stochastique qui fournit les états stationnaires et leur stabilité respective ; dans les cas plus généraux, on est réduit à explorer, par des simulations numériques, le comportement du matériau en fonction des conditions d'irradiation. On discute la cinétique des champs de concentration sous irradiation, une question aux multiples conséquences pratiques. Il ressort que les conditions d'irradiation sont définies par trois paramètres : les caractéristiques de la cascade (le nombre de déplacements et de remplacements, longueur des chaînes de remplacements, …), la fréquence d'apparition des cascades et la dose cumulée. Une clarification de vocabulaire consisterait à dénommer la cascade « dose (élémentaire) », leur fréquence d'apparition étant le « débit de dose ».
What organization of condensed matter does resist irradiation, as a function of irradiation conditions? How to characterize the latter? We survey the advances in the field during the past three decades, when irradiation effects reduce to nuclear collisions. While in simple cases (structure defined by a scalar order parameter) one may define a stochastic potential, which yields the stationary states of the compounds under irradiation and their respective stability, in more general cases, we are left with brute force atomistic simulations to explore materials' behaviour as a function of irradiation conditions. Special attention is given to the kinetics of concentration fields under irradiation, a question with several practical implications. We conclude that irradiation conditions are best defined by three parameters: the cascade features (number of displacements and replacements, length of replacement sequences, …), the frequency of cascade occurrence, and the cumulated dose. We suggest cascade features be named ‘(elementary) dose’ and the cascade occurrence frequency ‘dose rate’.
Mots-clés : Endommagement par irradiation, Matériaux complexes
Georges Martin 1 ; Pascal Bellon 2
@article{CRPHYS_2008__9_3-4_323_0, author = {Georges Martin and Pascal Bellon}, title = {Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems}, journal = {Comptes Rendus. Physique}, pages = {323--334}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.11.006}, language = {en}, }
TY - JOUR AU - Georges Martin AU - Pascal Bellon TI - Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems JO - Comptes Rendus. Physique PY - 2008 SP - 323 EP - 334 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2007.11.006 LA - en ID - CRPHYS_2008__9_3-4_323_0 ER -
Georges Martin; Pascal Bellon. Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 323-334. doi : 10.1016/j.crhy.2007.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.006/
[1] Thin Solid Films, 25 (1975), p. 107
[2] J. Appl. Phys., 39 (1968), p. 989
[3] Phys. Rev. B, 11 (1977), p. 771
[4] Solid State Phys., 50 (1997), p. 189
[5] Kinetics in nonequilibrium alloys (W. Pfeiler, ed.), Alloy Physics, Wiley-VCH, Meinheim, 2007, p. 423
[6] Phys. Rev. Lett., 79 (1997), p. 3680
[7] Phys. Rev. B, 62 (2000), p. 3058
[8] Phys. Rev. Lett., 84 (2000), p. 2885
[9] Phys. Rev. B, 63 (2001), p. 134111
[10] Phys. Rev. B, 70 (2004), p. 224106
[11] J. Nucl. Mater., 44 (1972), p. 318
[12] Physica A, 369 (2006), pp. 201-246
[13] Continuum Mech. Thermodyn., 16 (2004), p. 223
[14] Solid–Solid Phase Transformations (W.C. Johnson, ed.), TMS, 1994, p. 981
[15] Acta Mater., 46 (1998), p. 4243
[16] Phys. Lett. A, 177 (1993), p. 269
[17] Phys. Rev. B, 60 (1999), p. 14649
[18] J. Stat. Phys., 9 (1973), p. 51
[19] Phys. Rev. B, 39 (1989), p. 2403
[20] J. Nucl. Mater., 205 (1993), p. 438
[21] J. Appl. Phys., 93 (2003), p. 2917
[22] Phys. Rev. B, 30 (1984), pp. 1424-1436
[23] Phys. Rev. B, 70 (2004), p. 094104
[24] Phys. Rev. B, 70 (2004), p. 094105
[25] Phys. Rev. B, 73 (2006), p. 224121
[26] Atomic Transport in Solids, Cambridge University Press, 1993
- Effect of cluster chemistry on the strengthening of Al alloys, Acta Materialia, Volume 269 (2024), p. 119809 | DOI:10.1016/j.actamat.2024.119809
- Fast Melting and Crystallization of Interfaces in Eutectic Alloys-The Idea of ‘Thermal Prick’, METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, Volume 46 (2024) no. 8, p. 797 | DOI:10.15407/mfint.46.08.0797
- Flux-driven transformations in open systems revisited - crystallization of amorphous Ni-P driven by reaction with Sn, Acta Materialia, Volume 261 (2023), p. 119366 | DOI:10.1016/j.actamat.2023.119366
- Enhanced interfacial strength and ductility of stainless steel/carbon steel laminated composite by heterogenous lamella structure, Journal of Materials Research and Technology, Volume 18 (2022), p. 4846 | DOI:10.1016/j.jmrt.2022.04.057
- Stress-induced alternating microstructures of titanium/steel bonding interface, Materials Letters, Volume 298 (2021), p. 130019 | DOI:10.1016/j.matlet.2021.130019
- Glassy and ballistic dynamics in collision cascades in amorphous TiO2 : Combined molecular dynamics and Monte Carlo based studies across energy scales, Physical Review B, Volume 103 (2021) no. 17 | DOI:10.1103/physrevb.103.174201
- Interface and grain-boundary amorphization in the Al/Fe bimetallic system during pulsed-magnetic-driven impact, Scripta Materialia, Volume 110 (2016), p. 14 | DOI:10.1016/j.scriptamat.2015.07.035
- Subsurface microstructure evolution and deformation mechanism of Ag–Cu eutectic alloy after dry sliding wear, Wear, Volume 303 (2013) no. 1-2, p. 602 | DOI:10.1016/j.wear.2013.04.006
- Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs, Physical Review B, Volume 85 (2012) no. 6 | DOI:10.1103/physrevb.85.064114
- Irradiation-Induced Formation of Nanocrystallites withC15Laves Phase Structure in bcc Iron, Physical Review Letters, Volume 108 (2012) no. 2 | DOI:10.1103/physrevlett.108.025501
- Can We Describe phase Transition in Insulators within the Landau PT theory Framework?, MRS Proceedings, Volume 1215 (2009) | DOI:10.1557/proc-1215-v02-01
- NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM, Nuclear Engineering and Technology, Volume 41 (2009) no. 1, p. 1 | DOI:10.5516/net.2009.41.1.001
- Modelling in nuclear energy environments, Materials Today, Volume 11 (2008) no. 12, p. 54 | DOI:10.1016/s1369-7021(08)70253-0
Cité par 13 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier