Comptes Rendus
Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems
[Effets d'irradiation dans des alliages concentrés et des matériaux complexes : équilibre et cinétique des systèmes]
Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 323-334.

Quelle organisation de la matière résiste à l'irradiation, suivant les conditions d'irradiation ? Comment caractériser ces dernières ? Nous résumons les progrès réalisés au cours des trois dernières décennies, dans la limite où les effets d'irradiation se réduisent aux collisions nucléaires. Dans les cas simples (structure définie par un paramètre d'ordre scalaire) on peut construire un potentiel stochastique qui fournit les états stationnaires et leur stabilité respective ; dans les cas plus généraux, on est réduit à explorer, par des simulations numériques, le comportement du matériau en fonction des conditions d'irradiation. On discute la cinétique des champs de concentration sous irradiation, une question aux multiples conséquences pratiques. Il ressort que les conditions d'irradiation sont définies par trois paramètres : les caractéristiques de la cascade (le nombre de déplacements et de remplacements, longueur des chaînes de remplacements, …), la fréquence d'apparition des cascades et la dose cumulée. Une clarification de vocabulaire consisterait à dénommer la cascade « dose (élémentaire) », leur fréquence d'apparition étant le « débit de dose ».

What organization of condensed matter does resist irradiation, as a function of irradiation conditions? How to characterize the latter? We survey the advances in the field during the past three decades, when irradiation effects reduce to nuclear collisions. While in simple cases (structure defined by a scalar order parameter) one may define a stochastic potential, which yields the stationary states of the compounds under irradiation and their respective stability, in more general cases, we are left with brute force atomistic simulations to explore materials' behaviour as a function of irradiation conditions. Special attention is given to the kinetics of concentration fields under irradiation, a question with several practical implications. We conclude that irradiation conditions are best defined by three parameters: the cascade features (number of displacements and replacements, length of replacement sequences, …), the frequency of cascade occurrence, and the cumulated dose. We suggest cascade features be named ‘(elementary) dose’ and the cascade occurrence frequency ‘dose rate’.

Publié le :
DOI : 10.1016/j.crhy.2007.11.006
Keywords: Radiation damage, Complex materials
Mots-clés : Endommagement par irradiation, Matériaux complexes

Georges Martin 1 ; Pascal Bellon 2

1 CEA-Siège, Cabinet du haut commissaire, 91191 Gif-sur-Yvette cedex, France
2 Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
@article{CRPHYS_2008__9_3-4_323_0,
     author = {Georges Martin and Pascal Bellon},
     title = {Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems},
     journal = {Comptes Rendus. Physique},
     pages = {323--334},
     publisher = {Elsevier},
     volume = {9},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crhy.2007.11.006},
     language = {en},
}
TY  - JOUR
AU  - Georges Martin
AU  - Pascal Bellon
TI  - Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 323
EP  - 334
VL  - 9
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.11.006
LA  - en
ID  - CRPHYS_2008__9_3-4_323_0
ER  - 
%0 Journal Article
%A Georges Martin
%A Pascal Bellon
%T Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems
%J Comptes Rendus. Physique
%D 2008
%P 323-334
%V 9
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2007.11.006
%G en
%F CRPHYS_2008__9_3-4_323_0
Georges Martin; Pascal Bellon. Radiation effects in concentrated alloys and compounds: equilibrium and kinetics of driven systems. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 323-334. doi : 10.1016/j.crhy.2007.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.006/

[1] Y. Adda; M. Beyeler; G. Brebec Thin Solid Films, 25 (1975), p. 107

[2] J. Pauleve; A. Chamberod; K. Krebs; A. Bourret J. Appl. Phys., 39 (1968), p. 989

[3] A. Barbu; G. Martin; R. Cauvin; G. Martin Phys. Rev. B, 11 (1977), p. 771

[4] G. Martin; P. Bellon Solid State Phys., 50 (1997), p. 189

[5] P. Bellon; G. Martin Kinetics in nonequilibrium alloys (W. Pfeiler, ed.), Alloy Physics, Wiley-VCH, Meinheim, 2007, p. 423

[6] M. Zaiser; F. Banhart Phys. Rev. Lett., 79 (1997), p. 3680

[7] M. Zaiser; Y. Lyutovich; F. Banhart Phys. Rev. B, 62 (2000), p. 3058

[8] R.A. Enrique; P. Bellon Phys. Rev. Lett., 84 (2000), p. 2885

[9] R.A. Enrique; P. Bellon Phys. Rev. B, 63 (2001), p. 134111

[10] R.A. Enrique; P. Bellon Phys. Rev. B, 70 (2004), p. 224106

[11] R.S. Nelson; J.A. Hudson; D.J. Mazey J. Nucl. Mater., 44 (1972), p. 318

[12] P. Gaspard Physica A, 369 (2006), pp. 201-246

[13] C. Tsallis; E. Brigatti Continuum Mech. Thermodyn., 16 (2004), p. 223

[14] F. Soisson; P. Dubuisson; P. Bellon; G. Martin Solid–Solid Phase Transformations (W.C. Johnson, ed.), TMS, 1994, p. 981

[15] T. Abinandanan; F. Haider; G. Martin Acta Mater., 46 (1998), p. 4243

[16] V.G. Vaks; V.V. Kamyshenko Phys. Lett. A, 177 (1993), p. 269

[17] R. Enrique; P. Bellon Phys. Rev. B, 60 (1999), p. 14649

[18] R. Kubo; K. Matsuo; K. Kitahara J. Stat. Phys., 9 (1973), p. 51

[19] P. Bellon; G. Martin Phys. Rev. B, 39 (1989), p. 2403

[20] P. Bellon; P.R. Okamoto; G. Schumacher J. Nucl. Mater., 205 (1993), p. 438

[21] R.A. Enrique; K. Nordlund; R.S. Averback; P. Bellon J. Appl. Phys., 93 (2003), p. 2917

[22] G. Martin Phys. Rev. B, 30 (1984), pp. 1424-1436

[23] Jia Ye; P. Bellon Phys. Rev. B, 70 (2004), p. 094104

[24] Jia Ye; P. Bellon Phys. Rev. B, 70 (2004), p. 094105

[25] Jia Ye; P. Bellon Phys. Rev. B, 73 (2006), p. 224121

[26] A.R. Allnatt; A.B. Lidiard Atomic Transport in Solids, Cambridge University Press, 1993

  • Yixin Wang; Xinren Chen; Huan Zhao; Wenwen Sun; Qi Zhang; Baptiste Gault; Christopher Hutchinson Effect of cluster chemistry on the strengthening of Al alloys, Acta Materialia, Volume 269 (2024), p. 119809 | DOI:10.1016/j.actamat.2024.119809
  • S. Abakumov; A. Titova; A. М. Husak Fast Melting and Crystallization of Interfaces in Eutectic Alloys-The Idea of ‘Thermal Prick’, METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, Volume 46 (2024) no. 8, p. 797 | DOI:10.15407/mfint.46.08.0797
  • Andriy M. Gusak; Anastasiia Titova; Zhong Chen Flux-driven transformations in open systems revisited - crystallization of amorphous Ni-P driven by reaction with Sn, Acta Materialia, Volume 261 (2023), p. 119366 | DOI:10.1016/j.actamat.2023.119366
  • Yaohua Yang; Zizheng Jiang; Xuefeng Liu; Jihong Sun; Wenjing Wang Enhanced interfacial strength and ductility of stainless steel/carbon steel laminated composite by heterogenous lamella structure, Journal of Materials Research and Technology, Volume 18 (2022), p. 4846 | DOI:10.1016/j.jmrt.2022.04.057
  • Yu-Liang Bai; Xue-Feng Liu; Zhang-Zhi Shi Stress-induced alternating microstructures of titanium/steel bonding interface, Materials Letters, Volume 298 (2021), p. 130019 | DOI:10.1016/j.matlet.2021.130019
  • Alexander Holm; Stefan G. Mayr Glassy and ballistic dynamics in collision cascades in amorphous TiO2 : Combined molecular dynamics and Monte Carlo based studies across energy scales, Physical Review B, Volume 103 (2021) no. 17 | DOI:10.1103/physrevb.103.174201
  • Zhisong Fan; Haiping Yu; Chunfeng Li Interface and grain-boundary amorphization in the Al/Fe bimetallic system during pulsed-magnetic-driven impact, Scripta Materialia, Volume 110 (2016), p. 14 | DOI:10.1016/j.scriptamat.2015.07.035
  • W. Cai; P. Bellon Subsurface microstructure evolution and deformation mechanism of Ag–Cu eutectic alloy after dry sliding wear, Wear, Volume 303 (2013) no. 1-2, p. 602 | DOI:10.1016/j.wear.2013.04.006
  • M. Buron-Le Cointe; J. Hébert; C. Baldé; N. Moisan; L. Toupet; P. Guionneau; J. F. Létard; E. Freysz; H. Cailleau; E. Collet Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs, Physical Review B, Volume 85 (2012) no. 6 | DOI:10.1103/physrevb.85.064114
  • M.-C. Marinica; F. Willaime; J.-P. Crocombette Irradiation-Induced Formation of Nanocrystallites withC15Laves Phase Structure in bcc Iron, Physical Review Letters, Volume 108 (2012) no. 2 | DOI:10.1103/physrevlett.108.025501
  • David Simeone; Gianguido Baldinozzi; Dominique Gosset; Laurence Luneville; Léo Mazerolles Can We Describe phase Transition in Insulators within the Landau PT theory Framework?, MRS Proceedings, Volume 1215 (2009) | DOI:10.1557/proc-1215-v02-01
  • Maria Samaras; Maximo Victoria; Wolfgang Hoffelner NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM, Nuclear Engineering and Technology, Volume 41 (2009) no. 1, p. 1 | DOI:10.5516/net.2009.41.1.001
  • M. Samaras; M. Victoria Modelling in nuclear energy environments, Materials Today, Volume 11 (2008) no. 12, p. 54 | DOI:10.1016/s1369-7021(08)70253-0

Cité par 13 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: