The knowledge of the defect and impurity generation rates, as well as the defect spatial distribution, is the corner stone for the understanding of the evolution of material properties under irradiation. This knowledge is also an essential element for comprehensive experimental simulations of the behavior of irradiated materials.
In this article the interaction of neutron and proton irradiation with metals is discussed with respect to displacement damage production. Charged particle irradiation is also briefly illustrated. After discussion of the primary interaction of projectiles (neutrons, charged particles in general, and protons in particular) with target atoms/nuclei, we describe the interaction of a recoil atom with other target atoms resulting in the slowing down of the projectile, displacement damage, impurity atom production due to nuclear reactions, and the creation of atomic displacement cascades. Then the further evolution of defect structure is discussed. The next section, devoted to subcascade formation, is divided into two parts. The first experimental evidence of subcascade formation under neutron and charged particle irradiation is presented. Then the models of subcascade formation are described. Finally we review the models for the calculation of displacement damage and show how these models can be applied to displacement damage calculation under neutron irradiation with a demonstration of a real application of the methods discussed to several nuclear facilities.
Connaître le taux de génération de défauts et d'impuretés ainsi que la distribution spatiale des défauts est la base de la compréhension de l'évolution des propriétés des matériaux sous irradiation. Cette compréhension est aussi essentielle à une définition exhaustive des simulations expérimentales du comportement des matériaux sous irradiation.
Dans ce papier on discute l'interaction des neutrons et des protons avec les métaux, et, la production de dommage de déplacements qui en résultent. On illustre aussi brièvement les irradiations par particules chargées. Après avoir discuté l'interaction initiale de la particule incidente (neutrons, particules chargées en général, et, plus particulièrement protons) avec les atomes et les noyaux cibles, nous décrivons l'interaction de l'atome de recul avec les autres atomes, qui a pour conséquence le ralentissement du projectile, la création de dommage par déplacements, la production d'impuretés par réactions nucléaires et la création de cascades de déplacements atomiques. On discute alors l'évolution ultérieure de la structure des défauts. La section suivante dévolue à la formation de cascades comprend deux parties. On présente d'abord les évidences expérimentales de formation de sous-cascades provoquées par l'irradiation de neutrons et de particules chargées, puis, les modèles de formation de sous-cascades. Finalement nous analysons les modèles de calculs de dommage de déplacements et nous montrons comment ces modèles peuvent être appliqués au calcul du dommage de déplacements sous irradiation de neutrons. L'application de ces méthodes au cas réel de plusieurs installations nucléaires est finalement présentée.
Mot clés : Irradiation de neutrons, Dommage de déplacements, Cascades de collisions atomiques
Pavel Vladimirov 1; Serge Bouffard 2
@article{CRPHYS_2008__9_3-4_303_0, author = {Pavel Vladimirov and Serge Bouffard}, title = {Displacement damage and transmutations in metals under neutron and proton irradiation}, journal = {Comptes Rendus. Physique}, pages = {303--322}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2008.02.004}, language = {en}, }
TY - JOUR AU - Pavel Vladimirov AU - Serge Bouffard TI - Displacement damage and transmutations in metals under neutron and proton irradiation JO - Comptes Rendus. Physique PY - 2008 SP - 303 EP - 322 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2008.02.004 LA - en ID - CRPHYS_2008__9_3-4_303_0 ER -
Pavel Vladimirov; Serge Bouffard. Displacement damage and transmutations in metals under neutron and proton irradiation. Comptes Rendus. Physique, Volume 9 (2008) no. 3-4, pp. 303-322. doi : 10.1016/j.crhy.2008.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.02.004/
[1] Fusion Eng. Design, 82 (2007) no. 15–24, pp. 2444-2450
[2] Irradiation Damage to Solids, Pergamon Press, 1966
[3] New evaluation of displacement damage and gas production for breeder ceramics under IFMIF, fusion and fission neutron irradiation, J. Nucl. Mater., Volume 307–311 (2002), pp. 1680-1685
[4] J. Nucl. Mater., 216 (1994), pp. 29-44
[5] J. Nucl. Mater., 55 (1975), pp. 259-266
[6] Phys. Rev., 72 (1947), p. 1114
[7] et al. NIMB, 103 (1995), pp. 183-222
[8] J. Nucl. Mater., 216 (1994), pp. 1-28
[9] Phys. Rev. Lett., 57 (1986), p. 850
[10] Nucl. Instr. Meth. B, 90 (1994), p. 330
[11] F.A. Garner, L.R. Greenwood, P. Roy, An assessment of potential gamma ray enhancement of embrittlement in ABWR pressure vessel walls, in: Effects of Radiation on Materials: 18th Inter. Symp., ASTM STP 1325, pp. 52–74
[12] J. Nucl. Mater., 276 (2000), pp. 1-12
[13] Kinetics of Nonhomogeneous Processes (G.R. Freeman, ed.), Wiley, New York, 1987, pp. 377-463
[14] J. Nucl. Mat., 75 (1978), p. 162
[15] J. Nucl. Mater., 226 (1995), pp. 277-285
[16] Effects of Radiation on Materials: 18th. International Symposium, ASTM STP 1325 (R.K. Nanstad; M.L. Hamilton; F.A. Garner; A.S. Kumar, eds.), American Society for Testing and Materials, Philadelphia, 1999, pp. 14-29
[17] Mat. Res. Soc. Symp. Proc., 439 (1997), p. 307
[18] J. Nucl. Mater., 179–181 (1991), pp. 70-75
[19] Rad. Eff. Def. Solids, 113 (1990), pp. 15-28
[20] Phil. Mag. Lett., 87 (2007) no. 8, pp. 575-580
[21] Nucl. Instr. Meth. B, 202 (2003), pp. 31-43
[22] J. Nucl. Mater., 216 (1994), pp. 220-264
[23] J. Nucl. Mater., 276 (2000), pp. 41-49
[24] Recoil effects in radiation damage, Rad. Eff. Def. Solids, Volume 1 (1990) no. 13, pp. 15-28
[25] Recoil energy spectrum effects and point defect processes characteristic of cascades, J. Nucl. Mater., Volume 179–181 (1991), pp. 81-86
[26] Rad. Eff. Def. Solids, 113 (1990), pp. 75-96
[27] et al. J. Nucl. Mater., 179–181 (1991), pp. 901-904
[28] et al. J. Nucl. Mater., 250 (1997), pp. 236-241
[29] Atomic Energy, 83 (1997) no. 3, pp. 653-657
[30] J. Nucl. Mater., 328 (2004), pp. 77-261
[31] Rep. Progr. Phys., 18 (1955), p. 1
[32] Phys. Rev. B, 9 (1974), p. 5007
[33] Nucl. Eng. Des., 33 (1975), p. 50
[34] Kgl. Danske Videnskab Seiskab. Mat.-fys. Medd., 33 (1963) no. 10
[35] Kgl. Darske Videnskab. Selskab, Mat.-fys. Medd., 36 (1968) no. 10
[36] Kgl. Darske Videnskab. Selskab, Mat.-fys. Medd., 33 (1963) no. 14
[37] J. Nucl. Mater., 85–86 (1979), p. 611
[38] L.R. Greenwood, Radiation Damage Calculations for Compound Materials, September 19–22, 1989, Advisory Group Meeting on Nuclear Data for Radiation Damage Assessment and Related Safety Aspects International Atomic Energy Agency, Vienna, Austria
[39] The Stopping and Range of Ions in Solids, Pergamon Press, Inc., 1985
[40] Phys. Rev., 9 (1974), p. 5008 (PSR-0137/06: M.T. Robinson, MARLOWE Binary Collision Cascade Simulation Program, Version 15a, A Guide for Users, September 1, 2001)
[41] Rad. Eff., 60 (1982), p. 95
[42] Damage calculations in compound materials under neutron and ion irradiation, Rad. Eff., Volume 139 (1996), pp. 109-123
[43] R.E. MacFarlane, D.W. Muir, R.M. Boicourt, The NJOY Nuclear Data Processing System, vol. I: User's Manual LA-9303-M (ENDF-324), May 1982
[44] et al. Anisotropy of defect creation in electron-irradiated iron crystals, Phys. Rev. B, Volume 14 (1976), pp. 5303-5313
[45] ASTM Standard E521, Standard practice for neutron radiation damage simulation by charged-particle irradiation, Annual Book of ASTM Standards, Vol. 12 (2), 1993
[46] Appl. Phys., 18 (1979), pp. 131-140
[47] Nucl. Instr. Meth. Phys. Res. B, 255 (2007) no. 1, pp. 75-77
[48] S. Shimakawa, N. Sekimura, N. Nojiri, Radiation Damage Calculation by NPRIM Computer Code with JENDL3.3, 2002 Symposium on Nuclear Data (JAERI-Conf 2003-006), INDC(JPN)-191/U
[49] Rad. Eff., 60 (1982), p. 95
[50] A. Yu. Konobeyev, Yu.V. Konobeev, Yu.A. Korovin, Nuclear Data to Study Damage in Materials under Irradiation by Nucleons with Energies up to 25 GeV, INPPE, Obninsk, November 2000
[51] Nuclear data libraries for incident neutrons and protons to 150 MeV in ENDF-6 format, Proc. of the Topical Meeting on Nuclear Applications of Accelerator Technology, American Nuclear Society, La Grange Park, IL, 1997, pp. 175-182
[52] M.H. Barnett et al., Calculations of Radiation Damage at SNS, in: Proc. of AccApp'99
[53] R.E. Prael, H. Lichtenstein, User Guide to LCS: The LAHET Code System. Los Alamos National Laboratory report LA-UR-89-3014, Revised, September 15, 1989
[54] Fusion Eng. Design, 63–64 (2002), p. 121
[55] Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources, J. Nucl. Mater., Volume 329–333 (2004) no. 1, pp. 233-237
[56] et al. J. Nucl. Mater., 276 (2000), pp. 22-32
[57] Efficiency of defect production in cascades, J. Nucl. Mater., Volume 69–70 (1978), pp. 786-789
[58] et al. Analysis of the sub-cascade structure in copper produced by ion irradiations, J. Nucl. Mater., Volume 179–181 (1991), pp. 913-916
[59] MD description of damage production in displacement cascades in copper and a-iron, J. Nucl. Mater., Volume 323 (2003), pp. 152-162
[60] Defect production efficiencies in thermal neutron irradiated copper and molybdenum, J. Nucl. Mater., Volume 123 (1984), pp. 1028-1032
[61] U. Fischer, D. Leichtle, H. Tsige-Tamirat, Neutronics Characteristics of a Solid Breeder Blanket for a Fusion Power Demonstration Reactor, in: Annual Meeting on Nucl. Technology, Karlsruhe, ISSN 0720-9207, 1999, p. 553
[62] J. Nucl. Mater., 307–311 (2002), p. 1680
[63] Fusion Eng. Design, 63–64 (2002), p. 121
[64] Overview of recent progress in IFMIF neutronics, Fusion Eng. Design, Volume 81 (2006), pp. 1195-1202
[65] J. Nucl. Mater., 318 (2003), pp. 26-37
[66] D. King (Chairman), Conclusions of the Fusion Fast Track Experts Meeting, 27 November, 2001
[67] M. Gasparotto, G. Bauer, G. Martin, A. Möslang, N. Taylor, M. Victoria, Assessment on the Possibility of Neutron Spallation Sources to Contribute to the R&D Programme Related to Material Irradiation Testing, The Fusion Material Irradiation Devices Expert Group, EFDA-T-RE-5.0, September 2002
[68] Radiation damage conditions for ESS target hull and irradiation rigs, J. Nucl. Mater., Volume 343 (2005), pp. 205-211
[69] Irradiation conditions of ADS beam window and implications for window material, J. Nucl. Mater, Volume 356 (2006), pp. 287-299
[70] J. Nucl. Mater., 307–311 (2002), p. 1680
[71] S.P. Simakov, U. Fischer, V. Heinzel, U. von Möllendorf, FZK Report, FZKA 6743, 2002
[72] et al. Status of reduced activation ferritic/martensitic steel development, J. Nucl. Mater., Volume 367–370 (2007) no. 1, pp. 33-41
[73] Phys. Rev. C, 47 (1993), p. 1225
[74] Modified empirical parameterization of fragmentation cross sections, Phys. Rev. C, Volume 61 (2000), p. 034607
[75] et al. Astrophys. J., 508 (1998), pp. 949-958
[76] et al. J. Phys. IV (France), 12 (2002) (Pr8-63)
[77] Phys. Rev. C, 70 (2004), p. 054607
Cited by Sources:
Comments - Policy