Comptes Rendus
Challenges and potential of new approaches for reliability assessment of nanotechnologies
[Challenges et potentialités de nouvelles approches pour l'évaluation de la fiabilité des nanotechnologies]
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 95-109.

L'évaluation de la fiabilité des composants, circuits intégrés ou composants microassemblés, est incontestablement identifiée comme un des facteurs majeurs conditionnant la poursuite du développement de la microélectronique. De la même façon, la pénétration croissante des marchés, par les nanotechnologies, sera liée à la démonstration urgente d'une fiabilité opérationnelle construite en relation avec les standards actuels très exigeants. Cette situation nécessite un effort spécifique sur les méthodes de construction et de démonstration de la fiabilité. Ces réflexions doivent être intégrées, dès les phases de conception, en considérant deux approches clés liées aux modes de fabrication des dispositifs nanotechnologiques : les approches ‘top-down’ et ‘bottom-up’. La problématique de la fiabilité est, par définition, extrêmement large et couvre à la fois les questions relatives à la physique et à la physico-chimie des matériaux, aux phénomènes de transport électrique, aux phénomènes thermomécaniques, interfaces de couplage optique/électronique, aux modèles statistiques, etc.

L'objectif de cette contribution est de présenter les résultats de nouvelles méthodologies d'évaluation de la fiabilité, issues des travaux du Laboratoire IMS en étroite collaboration avec des partenaires industriels et universitaires. Ces approches spécifiques sont basées sur l'utilisation combinée de lois physiques de défaillance, de simulations comportementales et de méthodes statistiques intégrant une variabilité technologique inévitable pour extrapoler des taux de défaillance et des durées de vie en conditions opérationnelles. Des exemples d'application sont présentés et analysés sur des technologies microassemblées et composants optoélectroniques pour liaisons optiques à haut débit. Le but principal est de discuter de leurs potentialités et de leur champ d'applicabilité en vue de l'évaluation de la fiabilité intrinsèque de dispositifs nanotechnologiques en conditions opérationnelles.

Reliability assessment of components, integrated circuits or micro-assemblied devices, is undoubtedly identified as one of the major factors conditioning the on-going development of microelectronics. In the same way, growing market penetration by nanotechnologies is clearly related to the imperative demonstration of satisfactory built-in operational reliability with respect to actual severe standards. This situation requires a specific effort on built-in reliability. These considerations must be integrated, as early as possible at the beginning of the development ‘top-down’ and the ‘bottom-up’ approaches. Reliability issues cover extremely large scientific fields such as physics, material science, electrical transport, thermal phenomena, coupling interfaces between optics and electronics, statistical models, etc.

The objective of this paper deals with the presentation of new, original methodologies for reliability assessment, coming from studies in the IMS Laboratory, in close collaboration with industrial and academic partners. These new approaches are based on the combination of the physical laws of failure, behavioral simulations and statistical methods, adding inevitable parametric dispersions to extrapolate failure rates and lifetime in operating conditions. Some results are presented and analyzed on micro-assemblied technologies and photonic components for high-rate optical links. The main goal is to discuss their potentiality and applicability field with a view to intrinsic nanodevices reliability assessment in operating conditions.

Publié le :
DOI : 10.1016/j.crhy.2007.12.001
Keywords: Reliability, Failure mechanisms, Lifetime, Behavioral modeling, Nanotechnologies
Mot clés : Fiabilité, Mécanismes de défaillance, Durée de vie, Simulations comportementales, Nanotechnologies
Laurent Béchou 1 ; Yves Danto 1 ; Jean-Yves Deletage 1 ; Frédéric Verdier 1 ; Yannick Deshayes 1 ; Sébastien Fregonèse 1 ; Cristell Maneux 1 ; Thomas Zimmer 1 ; Dominique Laffitte 2

1 Laboratoire IMS, UMR CNRS n° 5218, 351, Cours de la Libération, 33405 Talence cedex, France
2 3SPhotonics, Route de Villejust, 91625 Nozay cedex, France
@article{CRPHYS_2008__9_1_95_0,
     author = {Laurent B\'echou and Yves Danto and Jean-Yves Deletage and Fr\'ed\'eric Verdier and Yannick Deshayes and S\'ebastien Fregon\`ese and Cristell Maneux and Thomas Zimmer and Dominique Laffitte},
     title = {Challenges and potential of new approaches for reliability assessment of nanotechnologies},
     journal = {Comptes Rendus. Physique},
     pages = {95--109},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.12.001},
     language = {en},
}
TY  - JOUR
AU  - Laurent Béchou
AU  - Yves Danto
AU  - Jean-Yves Deletage
AU  - Frédéric Verdier
AU  - Yannick Deshayes
AU  - Sébastien Fregonèse
AU  - Cristell Maneux
AU  - Thomas Zimmer
AU  - Dominique Laffitte
TI  - Challenges and potential of new approaches for reliability assessment of nanotechnologies
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 95
EP  - 109
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.12.001
LA  - en
ID  - CRPHYS_2008__9_1_95_0
ER  - 
%0 Journal Article
%A Laurent Béchou
%A Yves Danto
%A Jean-Yves Deletage
%A Frédéric Verdier
%A Yannick Deshayes
%A Sébastien Fregonèse
%A Cristell Maneux
%A Thomas Zimmer
%A Dominique Laffitte
%T Challenges and potential of new approaches for reliability assessment of nanotechnologies
%J Comptes Rendus. Physique
%D 2008
%P 95-109
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.12.001
%G en
%F CRPHYS_2008__9_1_95_0
Laurent Béchou; Yves Danto; Jean-Yves Deletage; Frédéric Verdier; Yannick Deshayes; Sébastien Fregonèse; Cristell Maneux; Thomas Zimmer; Dominique Laffitte. Challenges and potential of new approaches for reliability assessment of nanotechnologies. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 95-109. doi : 10.1016/j.crhy.2007.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.12.001/

[1] H. Iwai, Future of nano-CMOS technology and its production, in: International Symposium on the Physical & Failure Analysis of Integrated Circuits – IPFA Keynote Address, 2006, p. 1

[2] A.R. Brown; A. Asenov; J.R. Watling Intrinsic fluctuations in sub 10-nm double-gate MOSFETs introduced by discreteness of charge and matter, IEEE Nanotech. (2002), p. 195

[3] W.F. Clark; T.G. Ference; S.W. Mittl; J.S. Burnham; E.D. Adams Improved hot-electron reliability in high-performance, multi-level CMOS using deuterated barrier-nitride processing, IEEE El. Dev. Lett., Volume 20 (1999), p. 501

[4] C.H. Ming Ta; G. Zhang; Z. Gan Dynamic study of the physical processes in the intrinsic line electromigration of deep-submicron copper and aluminium interconnects, IEEE Dev. Mat. Reliab., Volume 4 (2004), p. 450

[5] R.C.J. Wang; C.C. Lee; L.D. Chen; K. Wu; K.S. Chang-Liao A study of Cu/Low-k stress-induced voiding at via bottom and its microstructure effect, Microelectron. Reliab., Volume 46 (2006), p. 1673

[6] J.S. Chen, M.D. Ker, Impact of MOSFET gate-oxide reliability in CMOS operational amplifiers in a 130 nm low-voltage CMOS process, in: International Reliability Physics Symposium-IRPS, 2006, p. 423

[7] R. Difrenza; P. Llinares; G. Ghibaudo A new model for the current factor mismatch in the MOS transistor, Solid State Electron., Volume 47 (2003), p. 1167

[8] S. Lucas, Realization and SEM observation of polysilicon and aluminium cantilever using surface micromachining technology, in: MSE 99, Arlington, VA, USA, 1999

[9] Y. Zorian Nanoscale design & test challenges, IEEE Computer, Volume 38 (2005), p. 36

[10] C. Constantinescu Trends and challenges in VLSI circuit reliability, IEEE Micro, Volume 23 (2003), p. 14

[11] R. Baumann Soft errors in advanced computer systems, IEEE Design & Test of Computers, Volume 22 (2005), p. 258

[12] S.P. Kumar, Micro-sensors networks, electronics and biology, in: International Symposium on Advanced Electronics for Future Generations, Tokyo, Japan, 2005, p. 23

[13] D. Ji; X. Gao; X.Y. Kong; J.M. Li Atomistic failure mechanism of single wall carbon with small diameters, Chin. Phys. Lett., Volume 24 (2007), p. 165

[14] J. Jimenez Laser diode reliability: Crystal defects and degradation modes, C. R. Physique, Volume 4 (2003), p. 663

[15] M. Bettiati; C. Starck; M. Pommies; N. Broqua; G. Gelly; M. Avella; J. Jimenez; I. Asaad; B. Orsal; J.M. Peransin Gradual degradation in 980 nm InGaAs/AlGaAs pump laser, Mat. Sci. Eng. B, Volume 91–92 (2002), p. 486

[16] B. Cluzel; L. Lalouat; P. Velha; E. Picard; D. Peyrade; J.-C. Rodier; T. Charvolin; P. Lalanne; E. Hadji; F. de Fornel Nano-manipulation of confined electromagnetic fields with a near-field probe, C. R. Physique, Volume 9 (2008) no. 1, pp. 24-30

[17] P. Senn, Objets communicants et nanotechnologies, Revue de l'Electricité et de l'Electronique (REE): D-“Nanosciences et Radioélectricité” (2007)

[18] S.M. Bachilo; L. Balzano; J.E. Herrera; F. Pompeo; D. Resasco Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc., Volume 125 (2003), p. 11186

[19] G.H. Jeong; A. Yamakazi; S. Suzuki; H. Yoshimura; Y. Kobayashi; Y. Homma Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution, J. Am. Chem. Soc., Volume 127 (2005), p. 8328

[20] D.T. Franco; J.F. Navinier; L. Navinier Yield and reliability issues in nanoelectronic technologies, Ann. Télécommun., Volume 61 (2006), p. 1247

[21] J.Y. Deletage; F. Verdier; B. Plano; Y. Deshayes; L. Bechou; Y. Danto Reliability estimation of BGA and CSP assemblies using degradation law model and technological parameters deviation, Microelectron. Reliab., Volume 43 (2003), p. 1137

[22] J.Y. Deletage, Etude de la durée de vie d'assemblages microélectroniques par l'utilisation de simulations, de modèles de dégradation et de circuits intégrés spécifiques de test, PhD. Thesis, Université Bordeaux 1, France, 2003

[23] J.W. Ewans Simulation of fatigue distributions for ball grid arrays by the Monte-Carlo method, Microelectron. Reliab., Volume 40 (2000), p. 1147

[24] L. Mendizabal; L. Bechou; Y. Deshayes; F. Verdier; Y. Danto; D. Laffitte; J.L. Goudard; F. Houe Study of influence of failure modes on lifetime distribution prediction of 1.55 μm DFB laser diodes using weak drift of monitored parameters during ageing tests, Microelectron. Reliab., Volume 44 (2004), p. 1337

[25] Y. Deshayes, L. Bechou, F. Verdier, B. Tregon, D. Laffitte, J.L. Goudard, Y. Hernandez, Y. Danto, Estimation of lifetime distributions on 1550 nm DFB laser diodes using Monte-Carlo statistic computations, in: SPIE Photonics Europe Conference 5465, Strasbourg, France, 2004, p. 103

[26] S. Huyghe; L. Bechou; N. Zerounian; Y. Deshayes; F. Aniel; A. Denolle; D. Laffitte; J.L. Goudard; Y. Danto Electroluminescence spectroscopy for reliability investigations of 1.55 μm bulk semiconductor optical amplifier, Microelectron. Reliab., Volume 45 (2005), p. 1593

[27] O. Ueda Reliability and Degradation of III–V Optical Devices, Artech House, Boston, 1996

[28] L. Bechou, L. Mendizabal, C. Aupetit-Berthelemot, Y. Deshayes, J.M. Dumas, J.L. Goudard, Y. Danto, Performance and reliability predictions of 1550 nm WDM optical transmission links using a system simulator, in: SPIE Photonics Europe Conference 6193, Strasbourg, France, 2006, pp. 13–1

[29] S.K.K. Lam; R.E. Mallard; D.T. Cassidy Analytical model for saturable aging in semiconductor lasers, J. Appl. Phys., Volume 94 (2003), p. 1803

[30] S.K.K. Lam; R.E. Mallard; D.T. Cassidy An extended multi-component model for the change of threshold current of semiconductor lasers as a function of time under the influence of defect annealing, J. Appl. Phys., Volume 95 (2004), p. 2264

Cité par Sources :

Commentaires - Politique