Comptes Rendus
Molecular-scale electronics
[Électronique à échelle moléculaire]
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 78-94.

L'électronique moléculaire est envisagée en tant que candidat prometteur pour la nanoélectronique du futur. Plus qu'une réponse possible au problème ultime de miniaturisation en nanoélectronique, l'électronique moléculaire est envisagée comme une approche possible et raisonnable pour assembler un grand nombre d'objets nanométriques (des molécules, des nanoparticules, des nanotubes et des nanofils) pour étudier de nouvelles architectures de composant et circuit. C'est également une approche intéressante pour réduire de manière significative les coûts de fabrication, aussi bien que les coûts énergétiques de calcul, comparés aux technologies habituelles à semi-conducteur. Par ailleurs, l'électronique moléculaire présente un large champ d'investigation : des objets quantique, pour examiner de nouveaux paradigmes, aux dispositifs hybrides moléculaire–silicium CMOS.

Molecular electronics is envisioned as a promising candidate for the nanoelectronics of the future. More than a possible answer to the ultimate miniaturization problem in nanoelectronics, molecular electronics is foreseen as a possible and reasonable way to assemble a large numbers of nanoscale objects (molecules, nanoparticles, nanotubes and nanowires) to form new devices and circuit architectures. It is also an interesting approach to significantly reduce the fabrication costs, as well as the energetical costs of computation, compared to usual semiconductor technologies. Moreover, molecular electronics is a field with a large spectrum of investigations: from quantum objects for testing new paradigms, to hybrid molecular-silicon CMOS devices.

Publié le :
DOI : 10.1016/j.crhy.2007.10.014
Keywords: Molecular electronics, Nano-electronics, Hybrid devices
Mot clés : Électronique moléculaire, Nanoélectronique, Dispositifs hybrides
Dominique Vuillaume 1

1 Molecular Nanostructures & Devices group, Institute for Electronics, Microelectronics and Nanotechnologies (IEMN), Centre National de la Recherche Scientifique (CNRS), University of Lille, BP60069, avenue Poincaré, Villeneuve d'Ascq 59652 cedex, France
@article{CRPHYS_2008__9_1_78_0,
     author = {Dominique Vuillaume},
     title = {Molecular-scale electronics},
     journal = {Comptes Rendus. Physique},
     pages = {78--94},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.10.014},
     language = {en},
}
TY  - JOUR
AU  - Dominique Vuillaume
TI  - Molecular-scale electronics
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 78
EP  - 94
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.10.014
LA  - en
ID  - CRPHYS_2008__9_1_78_0
ER  - 
%0 Journal Article
%A Dominique Vuillaume
%T Molecular-scale electronics
%J Comptes Rendus. Physique
%D 2008
%P 78-94
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.10.014
%G en
%F CRPHYS_2008__9_1_78_0
Dominique Vuillaume. Molecular-scale electronics. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 78-94. doi : 10.1016/j.crhy.2007.10.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.014/

[1] J.-M. Lehn Supramolecular chemistry-scope and perspectives. Molecules, supermolecules and molecular devices (Nobel lecture), Angew. Chem. Int. Ed. Engl., Volume 27 (1988), pp. 89-112

[2] B. Mann; H. Kuhn Tunneling through fatty acid salt monolayers, J. Appl. Phys., Volume 42 (1971) no. 11, pp. 4398-4405

[3] A. Aviram; M.A. Ratner Molecular rectifiers, Chem. Phys. Lett., Volume 29 (1974) no. 2, pp. 277-283

[4] A. Ulman An Introduction to Ultrathin Organic Films: From Langmuir–Blodgett to Self-Assembly, Boston, Academic Press, 1991

[5] G.J. Ashwell; J.R. Sambles; A.S. Martin; W.G. Parker; M. Szablewski Rectifying characteristics of Mg/(C16H33-Q3CNQ LB film)/Pt structures, J. Chem. Soc. Chem. Commun., Volume 19 (1990), pp. 1374-1376

[6] N.J. Geddes; J.R. Sambles; A.S. Martin Organic molecular rectifiers, Adv. Mater. Opt. Electron., Volume 5 (1995), pp. 305-320

[7] A.S. Martin; J.R. Sambles; G.J. Ashwell Molecular rectifier, Phys. Rev. Lett., Volume 70 (1993) no. 2, pp. 218-221

[8] R.M. Metzger; B. Chen; U. Höpfner; M.V. Lakshmikantham; D. Vuillaume; T. Kawai; X. Wu; H. Tachibana; T.V. Hughes; H. Sakurai; J.W. Baldwin; C. Hosch; M.P. Cava; L. Brehmer; G.J. Ashwell Unimolecular electrical rectification in hexadecyquinolinium tricyanoquinodimethanide, J. Am. Chem. Soc., Volume 119 (1997) no. 43, pp. 10455-10466

[9] D. Vuillaume; B. Chen; R.M. Metzger Electron transfer through a monolayer of hexadecylquinolinium tricyanoquinodimethanide, Langmuir, Volume 15 (1999) no. 11, pp. 4011-4017

[10] T. Xu; I.R. Peterson; M.V. Lakshmikantham; R.M. Metzger Rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide between gold electrodes, Angew. Chem. Int. Ed. Engl., Volume 40 (2001) no. 9, pp. 1749-1752

[11] R.M. Metzger; T. Xu; I.R. Peterson Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes, J. Phys. Chem. B, Volume 105 (2001) no. 30, pp. 7280-7290

[12] C.P. Collier; E.W. Wong; M. Belohradsky; F.M. Raymo; J.F. Stoddart; P.J. Kuekes; R.S. Williams; J.R. Heath Electronically configurable molecular-based logic gates, Science, Volume 285 (1999), pp. 391-394

[13] C.P. Collier; G. Mattersteig; E.W. Wong; Y. Luo; K. Beverly; J. Sampaio; F. Raymo; J.F. Stoddart; J.R. Heath A [2]catenane-based solid state electronically reconfigurable switch, Science, Volume 289 (2000), pp. 1172-1175

[14] A.R. Pease; J.O. Jeppesen; J.F. Stoddart; Y. Luo; C.P. Collier; J.R. Heath Switching devices based on interlocked molecules, Acc. Chem. Res., Volume 34 (2001) no. 6, pp. 433-444

[15] Y. Chen; G.-Y. Jung; D.A.A. Ohlberg; X. Li; D.R. Stewart; J.O. Jeppesen; K.A. Nielsen; J.F. Stoddart; R.S. Williams Nanoscale molecular-switch crossbar circuits, Nanotechnology, Volume 14 (2003), pp. 462-468

[16] Y. Chen; D.A.A. Ohlberg; X. Li; D.R. Stewart; R.S. Williams; J.O. Jeppesen; K.A. Nielsen; J.F. Stoddart; D.L. Olynick; E. Anderson Nanoscale molecular-switch devices fabricated by imprint lithography, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1610-1612

[17] M. Bruening; E. Moons; D. Yaron-Marcovitch; D. Cahen; J. Libman; A. Shanzer Polar ligand adsorption controls semiconductor surface potentials, J. Am. Chem. Soc., Volume 116 (1994) no. 7, pp. 2972-2977

[18] R. Cohen; S. Bastide; D. Cahen; J. Libman; A. Shanzer; Y. Rosenwaks Controlling surfaces and interfaces of semiconductors using organic molecules, Opt. Mat., Volume 9 (1998), pp. 394-400

[19] R. Cohen; N. Zenou; D. Cahen; S. Yitzchaik Molecular electronic tuning of Si surfaces, Chem. Phys. Lett., Volume 279 (1997), pp. 270-274

[20] R. Compano, L. Molenkamp, D.J. Paul, Technology roadmap for nanoelectronics, European Commission, IST Programme, Future and Emerging Technologies, Brussels, 2000

[21] C. Joachim; J.K. Gimzewski; A. Aviram Electronics using hybrid-molecular and monomolecular devices, Nature, Volume 408 (2000), pp. 541-548

[22] F. Schreiber Structure and growth of self-assembling monolayers, Prog. Surf. Sci., Volume 65 (2000) no. 5–8, pp. 151-256

[23] W.C. Bigelow; D.L. Pickett; W.A. Zisman J. Colloid Sci., 1 (1946), pp. 513-538

[24] R. Maoz; J. Sagiv On the formation and structure of self-assembling monolayers, J. Colloid Interface Sci., Volume 100 (1984) no. 2, pp. 465-496

[25] J.B. Brzoska; N. Shahidzadeh; F. Rondelez Evidence of a transition temperature for optimum deposition of grafted monolayer coatings, Nature, Volume 360 (1992), pp. 719-721

[26] J.B. Brzoska; I. Ben Azouz; F. Rondelez Silanization of solid substrates: a step toward reproducibility, Langmuir, Volume 10 (1994) no. 11, pp. 4367-4373

[27] D.L. Allara; A.N. Parikh; F. Rondelez Evidence for a unique chain organization in long chain silane monolayers deposited on two widely different solid substrates, Langmuir, Volume 11 (1995) no. 7, pp. 2357-2360

[28] A.N. Parikh; D.L. Allara; I. Ben Azouz; F. Rondelez An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature, J. Phys. Chem., Volume 98 (1994), pp. 7577-7590

[29] R.E. Holmlin; R. Haag; M.L. Chabinyc; R.F. Ismagilov; A.E. Cohen; A. Terfort; M.A. Rampi; G.M. Whitesides Electron transport through thin organic films in metal–insulator–metal junctions based on self-assembled monolayers, J. Am. Chem. Soc., Volume 123 (2001) no. 21, pp. 5075-5085

[30] M.A. Rampi; O.J.A. Schueller; G.M. Whitesides Alkanethiol self-assembled monolayers as the dielectric of capacitors with nanoscale thickness, Appl. Phys. Lett., Volume 72 (1998) no. 14, pp. 1781-1783

[31] Y. Selzer; A. Salomon; D. Cahen Effect of molecule–metal electronic coupling on through-bond hole tunneling across metal–organic monolayer–semiconductor junctions, J. Am. Chem. Soc., Volume 124 (2002) no. 12, pp. 2886-2887

[32] Y. Selzer; A. Salomon; D. Cahen The importance of chemical bonding to the contact for tunneling through alkyl chains, J. Phys. Chem. B, Volume 106 (2002) no. 40, pp. 10432-10439

[33] J. Chen; M.A. Reed; A.M. Rawlett; J.M. Tour Large on-off ratios and negative differential resistance in a molecular electronic device, Science, Volume 286 (1999), pp. 1550-1552

[34] J. Chen; W. Wang; M.A. Reed; A.M. Rawlett; D.W. Price; J.M. Tour Room-temperature negative differential resistance in nanoscale molecular junctions, Appl. Phys. Lett., Volume 77 (2000) no. 8, pp. 1224-1226

[35] G.C. Herdt; A.W. Czanderna Metal overlayer on organic functional groups of self-organized molecular assemblies. V. Ion scattering spectroscopy and X-ray photoelectron spectroscopy of Ag/COOH interfaces, J. Vac. Sci. Technol. A, Volume 13 (1995) no. 3, pp. 1275-1280

[36] D.R. Jung; A.W. Czanderna Chemical and physical interactions at metal/self-assembled organic monolayer interfaces, Crit. Rev. Solid State Mater. Sci., Volume 191 (1994), pp. 1-54

[37] D.R. Jung; A.W. Czanderna; G.C. Herdt Interactions and penetration at metal/self-assembled organic monolayer interfaces, J. Vac. Sci. Technol. A, Volume 14 (1996) no. 3, pp. 1779-1787

[38] G.L. Fisher; A.E. Hooper; R.L. Opila; D.L. Allara; N. Winograd The interaction of vapor-deposited Al atoms with COOH groups at the surface of a self-assembled alkanethiolate monolayer on gold, J. Phys. Chem. B, Volume 104 (2000) no. 14, pp. 3267-3273

[39] G.L. Fisher; A.V. Walker; A.E. Hooper; T.B. Tighe; K.B. Bahnck; H.T. Skriba; M.D. Reinard; B.C. Haynie; R.L. Opila; N. Winograd; D.L. Allara Bond insertion, complexation and penetration pathways of vapor-deposited aluminium atoms with HO- and CH3O-terminated organic monolayers, J. Am. Chem. Soc., Volume 124 (2002) no. 19, pp. 5528-5541

[40] K. Konstadinidis; P. Zhang; R.L. Opila; D.L. Allara An in-situ X-ray photoelectron study of the interaction between vapor-deposited Ti atoms and functional groups at the surfaces of self-assembled monolayers, Surf. Sci., Volume 338 (1995), pp. 300-312

[41] S. Lenfant; D. Guerin; F. Tran Van; C. Chevrot; S. Palacin; J.-P. Bourgoin; O. Bouloussa; F. Rondelez; D. Vuillaume Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule–metal interface, J. Phys. Chem. B, Volume 110 (2006) no. 28, pp. 13947-13958

[42] D.K. Aswal; S. Lenfant; D. Guerin; J.V. Yakhmi; D. Vuillaume A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane, Small, Volume 1 (2005) no. 7, pp. 725-729

[43] D. Cahen; A. Kahn; E. Umbach Energetics of molecular interfaces, Mater. Today ( July/August 2005 ), pp. 32-41

[44] A. Kahn; N. Koch; W. Gao Electronic structure and electrical properties of interfaces between metals and pi-conjugated molecular films, J. Polymer Sci.: Part B: Polymer Phys., Volume 41 (2003), pp. 2529-2548

[45] N. Okazaki, J.R. Sambles. New fabrication technique and current–voltage properties of a Au/LB/Au structure, in: International Symposium on Organic Molecular Electronics, Nagoya, Japan, 2000

[46] Y.-L. Loo; D.V. Lang; J.A. Rogers; J.W.P. Hsu Electrical contacts to molecular layers by nanotransfer printing, Nano Lett., Volume 3 (2003) no. 7, pp. 913-917

[47] Y. Xia; G.M. Whitesides Soft lithography, Angew. Chem. Int. Ed. Engl., Volume 37 (1998), pp. 550-575

[48] Y.-L. Loo; R.L. Willet; K.W. Baldwin; J.A. Rogers J. Am. Chem. Soc., 124 (2002), p. 7654

[49] D. Guerin; C. Merckling; S. Lenfant; X. Wallart; D. Vuillaume Silicon–molecules–metal junctions by transfer printing: chemical synthesis and electrical properties, J. Phys. Chem. C, Volume 111 (2007) no. 22, pp. 7947-7956

[50] A. Vilan; D. Cahen Soft contact deposition onto molecularly modified GaAs. Thin metal film flotation: principles and electrical effects, Adv. Func. Mater., Volume 12 (2002) no. 11–12, pp. 795-807

[51] H.B. Akkerman; P.W.M. Blom; D.M. De Leeuw; B. De Boer Towards molecular electronics with large-area molecular junctions, Nature, Volume 441 (2006) no. 4, pp. 69-72

[52] J. He; B. Chen; A.K. Flatt; J.J. Stephenson; C.D. Doyle; J.M. Tour Metal-free silicon–molecule–nanotube testbed and memory device, Nature Mater., Volume 5 (2006), pp. 63-68

[53] J.G. Kushmerick; D.B. Holt; S.K. Pollack; M.A. Ratner; J.C. Yang; T.L. Schull; J. Naciri; M.H. Moore; R. Shashidhar Effect of bond-length alternation in molecular wires, J. Am. Chem. Soc., Volume 124 (2002) no. 36, pp. 10654-10655

[54] J.G. Kushmerick; D.B. Holt; J.C. Yang; J. Naciri; M.H. Moore; R. Shashidhar Metal–molecule contacts and charge transport across monomolecular layers: measurement and theory, Phys. Rev. Lett., Volume 89 (2002) no. 8, p. 086802

[55] L.A. Bumm; J.J. Arnold; T.D. Dunbar; D.L. Allara; P.S. Weiss Electron transfer through organic molecules, J. Phys. Chem. B, Volume 103 (1999) no. 38, pp. 8122-8127

[56] A.P. Labonté; S.L. Tripp; R. Reifenberger; A. Wei Scanning tunneling spectroscopy of insulating self-assembled monolayers on Au(111), J. Phys. Chem. B, Volume 106 (2002) no. 34, pp. 8721-8725

[57] D.J. Wold; C.D. Frisbie Formation of metal–molecule–metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip, J. Am. Chem. Soc., Volume 122 (2000) no. 12, pp. 2970-2971

[58] D.J. Wold; C.D. Frisbie Fabrication and characterization of metal–molecule–metal junctions by conducting probe atomic force microscopy, J. Am. Chem. Soc., Volume 123 (2001), pp. 5549-5556

[59] D.J. Wold; R. Haag; M.A. Rampi; C.D. Frisbie Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: unsaturated versus saturated molecular junctions, J. Phys. Chem. B (2002) (web 23-2-2002)

[60] X.D. Cui; A. Primak; X. Zarate; J. Tomfohr; O.F. Sankey; A.L. Moore; T.A. Moore; D. Gust; G. Harris; S.M. Lindsay Reproductible measurement of single-molecule conductivity, Science, Volume 294 (2001), pp. 571-574

[61] K.-A. Son; H.I. Kim; J.E. Houston Role of stress on charge transfer through self-assembled alkanethiol monolayers on Au, Phys. Rev. Lett., Volume 86 (2001) no. 23, pp. 5357-5360

[62] F. Moresco; G. Meyer; K.-H. Rieder; H. Tang; A. Gourdon; C. Joachim Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching, Phys. Rev. Lett., Volume 86 (2001) no. 4, pp. 672-675

[63] B. Xu; N.J. Tao Measurement of single-molecule resistance by repeated formation of molecular junctions, Science, Volume 301 (2003), pp. 1221-1223

[64] J. Ulrich; D. Esrail; W. Pontius; L. Venkataraman; D. Millar; L.H. Doerrer Variability of conductance in molecular junctions, J. Phys. Chem. B, Volume 110 (2006) no. 6, pp. 2462-2466

[65] L. Venkataraman; J.E. Klare; I.W. Tam; C. Nuckolls; M.S. Hybertsen; M.L. Steigerwald Single-molecule circuits with well-defined molecular conductance, Nano Lett., Volume 6 (2006) no. 3, pp. 458-462

[66] F. Chen; X. Li; J. Hihath; Z. Huang; N.J. Tao Effect of anchoring groups on single-molecule conductance: comparative study of thiom-, amine-, and carboxylic-acid-terminated molecules, J. Am. Chem. Soc., Volume 128 (2006) no. 49, pp. 15874-15881

[67] X. Li; J. He; J. Hihath; B. Xu; S.M. Lindsay; N.J. Tao Conductance of single alkanethiols: conduction mechanism and effect of molecule-electrode contacts, J. Am. Chem. Soc., Volume 128 (2006) no. 6, pp. 2135-2141

[68] L. Venkataraman; Y.S. Park; A.C. Whalley; C. Nuckolls; M.S. Hybertsen; M.L. Steigerwald Electronics and chemistry: varying single-molecule junction conductance using chemical substituents, Nano Lett., Volume 7 (2007) no. 2, pp. 502-506

[69] L. Venkataraman; J.E. Klare; C. Nuckolls; M.S. Hybertsen; M.L. Steigerwald Dependence of single molecule junction conductance on molecular conformation, Nature, Volume 442 (2006), pp. 904-907

[70] J. Collet; O. Tharaud; A. Chapoton; D. Vuillaume Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films, Appl. Phys. Lett., Volume 76 (2000) no. 14, pp. 1941-1943

[71] J. Collet; D. Vuillaume A nano-field effect transistor with an organic self-assembled monolayer as gate insulator, Appl. Phys. Lett., Volume 73 (1998) no. 18, pp. 2681-2683

[72] M. Mottaghi; P. Lang; F. Rodriguez; A. Rumyantseva; A. Yassar; G. Horowitz; S. Lenfant; D. Tondelier; D. Vuillaume Low-operating-voltage organic transistors made of bifunctional self-assembled monolayers, Adv. Func. Mater., Volume 17 (2007), pp. 597-604

[73] S. Cholet; C. Joachim; J.P. Martinez; B. Rousset Fabrication of co-planar metal–insulator–metal solid state nanojunction down to 5 nm, Eur. Phys. J. Appl. Phys., Volume 8 (1999) no. 2, pp. 139-145

[74] A. Bezryadin; C. Dekker Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters, J. Vac. Sci. Technol. B, Volume 15 (1997) no. 4, pp. 793-799

[75] M.A. Guillorn; D.W. Carr; R.C. Tiberio; E. Greenbaum; M.L. Simpson Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization, J. Vac. Sci. Technol. B, Volume 18 (2000) no. 3, pp. 1177-1181

[76] H. Park; A.K.L. Lim; P.A. Alivisatos; J. Park; P.L. McEuen Fabrication of metallic electrodes with nanometer separation by electromigration, Appl. Phys. Lett., Volume 75 (1999) no. 2, pp. 301-303

[77] W. Liang; M.P. Shores; M. Bockrath; J.R. Long; H. Park Kondo effect in a single-molecule transistor, Nature, Volume 417 (2002), pp. 725-729

[78] J. Park; A.N. Pasupathy; J.I. Goldsmith; C. Chang; Y. Yaish; J.R. Petta; M. Rinkoski; J.P. Sethna; H.D. Abrunas; P.L. McEuen; D.C. Ralph Coulomb blockade and the Kondo effect in single-atom transistors, Nature, Volume 417 (2002), pp. 722-725

[79] S. Boussaad; N.J. Tao Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method, Appl. Phys. Lett., Volume 80 (2002) no. 13, pp. 2398-2400

[80] C.Z. Li; H.X. He; N.J. Tao Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching, Appl. Phys. Lett., Volume 77 (2000) no. 24, pp. 3995-3997

[81] Y.V. Kervennic; H.S. Van der Zant; A.F. Morpurgo; L. Gurevitch; L.P. Kouwenhoven Nanometer-spaced electrodes with calibrated separation, Appl. Phys. Lett., Volume 80 (2002) no. 2, pp. 321-323

[82] X. Guo; J.P. Small; J.E. Klare; Y. Wang; M.S. Purewal; I.W. Tam; B.H. Hong; R. Caldwell; L. Huang; S. O'Brien; J. Yan; R. Breslow; S.J. Wind; J. Hone; P. Kim; C. Nuckolls Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules, Science, Volume 311 (2006), pp. 356-359

[83] X. Guo; A.C. Whalley; J.E. Klare; L. Huang; S. O'Brien; M.L. Steigerwald; C. Nuckolls Single-molecule devices as scaffolding for multicomponent nanostructure assembly, Nano Lett., Volume 7 (2007) no. 5, pp. 1119-1122

[84] M.A. Reed; C. Zhou; C.J. Muller; T.P. Burgin; J.M. Tour Conductance of a molecular junction, Science, Volume 278 (1997), pp. 252-254

[85] C. Kergueris; J.P. Bourgoin; S. Palacin; D. Esteve; C. Urbina; M. Magoga; C. Joachim Electron transport through a metal–molecule–metal junction, Phys. Rev. B, Volume 59 (1999) no. 19, pp. 12505-12513

[86] J. Reichert; R. Ochs; D. Beckmann; H.B. Weber; M. Mayor; H.v. Löhneysen Driving current through single organic molecules, Phys. Rev. Lett., Volume 88 (2002) no. 17, p. 176804

[87] H.B. Weber; J. Reichert; F. Weigend; R. Ochs; D. Beckmann; M. Mayor; R. Ahlrichs; H.v. Löhneysen Electronic transport through single conjugated molecules, Chem. Phys., Volume 281 (2002), pp. 113-125

[88] M. Elbing; R. Ochs; M. Koentopp; M. Fischer; C. von Hänisch; F. Weigend; F. Evers; H.B. Weber; M. Mayor A single-molecule diode, Proc. Natl. Acad. Sci. USA, Volume 102 (2005) no. 25, pp. 8815-8820

[89] J. Reichert; H.B. Weber; M. Mayor; H.v. Lölneysen Low-temperature conductance measurements on single molecules, Appl. Phys. Lett., Volume 82 (2003) no. 23, pp. 4137-4139

[90] T. Dadosh; Y. Gordin; R. Krahne; I. Khrivrich; D. Mahalu; V. Frydman; J. Sperling; A. Yacoby; I. Bar-Joseph Measurement of the conductance of single conjugated molecules, Nature, Volume 436 (2005), pp. 677-680

[91] D.P. Long; C.H. Patterson; M.H. Moore; D.S. Seferos; G. Bazan; J.G. Kushmerick Magnetic directed assembly of molecular junctions, Appl. Phys. Lett., Volume 86 (2005), p. 153105

[92] A. Szuchmacher Blum; J.G. Kushmerick; D.P. Long; C.H. Patterson; J.C. Yang; J.C. Henderson; Y. Yao; J.M. Tour; R. Shashidhar; B.R. Ratna Molecularly inherent voltage-controlled conductance switching, Nature Mater., Volume 4 (2005), pp. 167-172

[93] E.E. Polymeropoulos Electron tunneling through fatty-acid monolayers, J. Appl. Phys., Volume 48 (1977) no. 6, pp. 2404-2407

[94] E.E. Polymeropoulos; J. Sagiv Electrical conduction through adsorbed monolayers, J. Chem. Phys., Volume 69 (1978) no. 5, pp. 1836-1847

[95] S. Lenfant, Monocouches organiques auto-assemblées pour la réalisation de diodes moléculaires, PhD, Univ. of Lille, 2001

[96] W. Wang; T. Lee; M.A. Reed Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B, Volume 68 (2003), p. 035416

[97] H. Sakaguchi; A. Hirai; F. Iwata; A. Sasaki; T. Nagamura; E. Kawata; S. Nakabayashi Determination of performance on tunnel conduction through molecular wire using a conductive atomic force microscope, Appl. Phys. Lett., Volume 79 (2001) no. 22, pp. 3708-3710

[98] V.B. Engelkes; J.M. Beebe; C.D. Frisbie Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: Effects of metal work function and applied bias on tunneling efficiency and contact resistance, J. Am. Chem. Soc., Volume 126 (2004) no. 43, pp. 14287-14296

[99] X.D. Cui; A. Primak; X. Zarate; J. Tomfohr; O.F. Sankey; A.L. Moore; T.A. Moore; D. Gust; L.A. Nagahara; S.M. Lindsay Changes in the electronic properties of a molecule when it is wired into a circuit, J. Phys. Chem. B, Volume 106 (2002) no. 34, pp. 8609-8614

[100] A. Salomon; D. Cahen; S.M. Lindsay; J. Tomfohr; V.B. Engelkes; C.D. Frisbie Comparison of electronic transport measurements on organic molecules, Adv. Mat., Volume 15 (2003) no. 22, pp. 1881-1890

[101] R.J. Powell Interface energy barrier determination from voltage dependence of photoinjected currents, J. Appl. Phys., Volume 41 (1970) no. 6, pp. 2424-2432

[102] C. Boulas; J.V. Davidovits; F. Rondelez; D. Vuillaume Suppression of charge carrier tunneling through organic self-assembled monolayers, Phys. Rev. Lett., Volume 76 (1996) no. 25, pp. 4797-4800

[103] D. Vuillaume; C. Boulas; J. Collet; G. Allan; C. Delerue Electronic structure of alkylsiloxane self-assembled monolayer-silicon heterostructure, Phys. Rev. B, Volume 58 (1998) no. 24, pp. 16491-16498

[104] A. Salomon; M. Boecking; C.K. Chan; F. Amy; O. Girshevitz; D. Cahen; A. Kahn How do electronic carriers cross Si-bound alkyl monolayers?, Phys. Rev. Lett., Volume 95 (2005), p. 266897

[105] A. Salomon; M. Boecking; O. Seitz; T. Markus; F. Amy; C.K. Chan; W. Zhao; D. Cahen; A. Kahn What is the barrier for tunneling through alkyl monolayers? Results from n– and p–Si–alkyl/Hg junctions, Adv. Mat., Volume 19 (2007), pp. 445-450

[106] T. Vondrak; C.J. Cramer; X.-Y. Zhu The nature of electronic contact in self-assembled monolayers for molecular electronics: evidence of strong coupling, J. Phys. Chem. B, Volume 103 (1999) no. 42, pp. 8915-8919

[107] J.M. Beebe; V.B. Engelkes; L.L. Miller; C.D. Frisbie Contact resistance in metal–molecule–metal junctions based on aliphatic SAMs: Effects of surface linker and metal work function, J. Am. Chem. Soc., Volume 124 (2002) no. 38, pp. 11268-11269

[108] J.G. Kushmerick; J. Lazorcik; C.H. Patterson; R. Shashidhar; D.S. Seferos; G. Bazan Vibronic contributions to charge transport across molecular junctions, Nano Lett., Volume 4 (2004), p. 643

[109] W. Wang; T. Lee; I. Krestchmar; M.A. Reed Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer, Nano Lett., Volume 4 (2004), p. 643

[110] C. Petit; G. Salace; S. Lenfant; D. Vuillaume Inelastic tunneling spectra of an alkyl self-assembled monolayer using a MOS tunnel junction as a test-bed, Microelectronic Engrg., Volume 80 (2005), pp. 398-401

[111] D.K. Aswal; C. Petit; G. Salace; D. Guérin; S. Lenfant; J.V. Yakhmi; D. Vuillaume Role of interfaces on the direct tunneling and the inelastic tunneling behaviors through metal/alkylsilane/silicon junctions, Phys. Stat. Sol. (a), Volume 203 (2006) no. 6, pp. 1464-1469

[112] J.M. Beebe; H.J. Moore; T.R. Lee; J.G. Kushmerick Vibronic coupling in semifluorinated alkanethiol junctions: Implications for selection rules in inelastic electron tunneling spectroscopy, Nano Lett., Volume 7 (2007) no. 5, pp. 1364-1368

[113] D.P. Long; J.L. Lazorcik; B.A. Mantooth; M.H. Moore; M.A. Ratner; A. Troisi; Y. Yao; J.W. Ciszek; J.M. Tour; R. Shashidhar Effects of hydration on molecular junction transport, Nature Mater., Volume 5 (2006), pp. 901-908

[114] Z. Huang; B. Xu; Y. Chen; M. Di Ventra; N.J. Tao Measurement of current-induced local heating in a single molecule junction, Nano Lett., Volume 6 (2006) no. 6, pp. 1240-1244

[115] N. Clement; S. Pleutin; O. Seitz; S. Lenfant; D. Vuillaume 1/fγ tunnel current noise through Si-bound alkyl monolayers, Phys. Rev. B, Volume 76 (2007), p. 205407

[116] J.R. Petta; S.K. Slater; D.C. Ralph Spin-dependent transport in molecular tunnel junctions, Phys. Rev. Lett., Volume 93 (2004) no. 13, p. 136601

[117] W. Wang; C.A. Richter Spin-polarized inelastic tunneling spectroscopy of a molecular magnetic tunnel junction, Appl. Phys. Lett., Volume 89 (2006), p. 153105

[118] L.A. Bumm; J.J. Arnold; M.T. Cygan; T.D. Dunbar; T.P. Burgin; L. Jones; D.L. Allara; J.M. Tour; P.S. Weiss Are single molecular wires conducting?, Science, Volume 271 (1996), pp. 1705-1707

[119] L. Patrone; S. Palacin; J.-P. Bourgoin; J. Lagoute; T. Zambelli; S. Gauthier Direct comparison of the electronic coupling efficiency of sulfur and selenium anchoring groups for molecules adsorbed onto gold electrodes, Chem. Phys., Volume 281 (2002), pp. 325-332

[120] L. Patrone; S. Palacin; J. Charlier; F. Armand; J.-P. Bourgoin; H. Tang; S. Gauthier Evidence of the key role of metal–molecule bonding in metal–molecule–metal transport experiments, Phys. Rev. Lett., Volume 91 (2003) no. 9, p. 096802

[121] M. Di Ventra; N.D. Lang Transport in nanoscale conductors from first principles, Phys. Rev. B, Volume 65 (2001), p. 045402

[122] S.N. Yaliraki; M. Kemp; M.A. Ratner Conductance of molecular wires: Influence of molecule–electrode binding, J. Am. Chem. Soc., Volume 121 (1999) no. 14, pp. 3428-3434

[123] L. Patrone; S. Palacin; J.-P. Bourgoin Direct comparison of the electronic coupling efficiency of sulfur and selenium alligator clips for molecules adsorbed onto gold electrodes, Appl. Surf. Sci., Volume 212 (2003), pp. 446-451

[124] P. Reddy; S.-Y. Jang; R.A. Segalman; A. Majumdar Thermoelectricity in molecular junction, Science, Volume 315 (2007), pp. 1568-1571

[125] R.M. Metzger The unimolecular rectifier: Unimolecular electronic devices are coming…, J. Mater. Chem., Volume 9 (1999), pp. 2027-2036

[126] R.M. Metzger; C.A. Panetta The quest for unimolecular devices, New J. Chem., Volume 15 (1991), pp. 209-221

[127] R.M. Metzger; J.W. Baldwin; W.J. Shumate; I.R. Peterson; P. Mani; G.J. Mankey; T. Morris; G. Szulczewski; S. Bosi; M. Prato; A. Comito; Y. Rubin Electrical rectification in a Langmuir–Blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes, J. Phys. Chem. B, Volume 107 (2003) no. 4, pp. 1021-1027

[128] J.W. Baldwin; R.R. Amaresh; I.R. Peterson; W.J. Shumate; M.P. Cava; M.A. Amiri; R. Hamilton; G.J. Ashwell; R.M. Metzger Rectification and nonlinear optical properties of a Langmuir–Blodgett monolayer of a pyridinium dye, J. Phys. Chem. B, Volume 106 (2002) no. 47, pp. 12158-12164

[129] M.-K. Ng; D.-C. Lee; L. Yu Molecular diodes based on conjugated biblock co-oligomers, J. Am. Chem. Soc., Volume 124 (2002) no. 40, pp. 11862-11863

[130] Z. Wei; M. Kondratenko; L.H. Dao; D.F. Perepichka Rectifying diodes from asymmetrically functionalized single-wall carbon nanotubes, J. Am. Chem. Soc., Volume 128 (2006), pp. 3134-3135

[131] C. Krzeminski; G. Allan; C. Delerue; D. Vuillaume; R.M. Metzger Theory of electrical rectification in a molecular monolayer, Phys. Rev. B, Volume 64 (2001), p. 085405

[132] K. Stokbro; J. Taylor; M. Brandbyge Do Aviram–Ratner diodes rectify?, J. Am. Chem. Soc., Volume 125 (2003) no. 13, pp. 3674-3675

[133] P.E. Kornilovitch; A.M. Bratkovsky; R.S. Williams Current rectification by molecules with asymmetric tunneling barriers, Phys. Rev. B, Volume 66 (2002), p. 165436

[134] J. Taylor; M. Brandbyge; K. Stokbro Theory of rectification in Tour wires: the role of electrode coupling, Phys. Rev. Lett., Volume 89 (2002) no. 13, p. 138301

[135] S. Datta; W. Tian; S. Hong; R. Reifenberger; J.I. Henderson; C.P. Kubiak Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett., Volume 79 (1997) no. 13, pp. 2530-2533

[136] S. Lenfant; C. Krzeminski; C. Delerue; G. Allan; D. Vuillaume Molecular rectifying diodes from self-assembly on silicon, Nano Lett., Volume 3 (2003) no. 6, pp. 741-746

[137] A. Aviram; C. Joachim; M. Pomerantz Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope, Chem. Phys. Lett., Volume 146 (1988) no. 6, pp. 490-495

[138] A. Aviram; C. Joachim; M. Pomerantz Errata on “Evidence of switching and rectification by a single molecule effected by a scanning tunneling microscope”, Chem. Phys. Lett., Volume 162 (1989) no. 4–5, p. 416

[139] A. Aviram Molecules for memory, logic, and amplification, J. Am. Chem. Soc., Volume 110 (1988), pp. 5687-5692

[140] M.A. Reed; J. Chen; A.M. Rawlett; D.W. Price; J.M. Tour Molecular random access memory cell, Appl. Phys. Lett., Volume 78 (2001) no. 23, pp. 3735-3737

[141] Z.J. Donhauser; B.A. Mantooth; K.F. Kelly; L.A. Bumm; J.D. Monnell; J.J. Stapleton; D.W. Price; A.M. Rawlett; D.L. Allara; J.M. Tour; P.S. Weiss Conductance switching in single molecules through conformational changes, Science, Volume 292 (2001), pp. 2303-2307

[142] G.K. Ramachandran; T.J. Hopson; A.M. Rawlett; L.A. Nagahara; A. Primak; S.M. Lindsay A bond-fluctuation mechanism for stochastic switching in wired molecules, Science, Volume 300 (2003) no. 5624, pp. 1413-1416

[143] C.P. Collier; J.O. Jeppesen; Y. Luo; J. Perkins; E.W. Wong; J.R. Heath; J.F. Stoddart Molecular-based electronically switchable tunnel junction devices, J. Am. Chem. Soc., Volume 123 (2001) no. 50, pp. 12632-12641

[144] J.E. Green; J.W. Choi; A. Boukai; Y. Bunimovich; E. Johnston-Halperin; E. Delonno; Y. Luo; B.A. Sherrif; K. Xu; Y.S. Shin; H.-R. Tseng; J.F. Stoddart; J.R. Heath A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter, Nature, Volume 445 (2007), pp. 414-417

[145] D.R. Stewart; D.A.A. Ohlberg; P.A. Beck; Y. Chen; R.S. Williams; J.O. Jeppesen; K.A. Nielsen; J.F. Stoddart Molecule-independent electrical switching in Pt/organic monolayer/Ti devices, Nano Lett., Volume 4 (2004) no. 1, pp. 133-136

[146] C. Loppacher; M. Guggiesberg; O. Pfeiffer; E. Meyer; M. Bammerlin; R. Lüthi; R.G. Schlitter; J.K.H. Tang; C. Joachim Direct determination of the energy required to operate a single molecule switch, Phys. Rev. Lett., Volume 90 (2003) no. 6, p. 066107

[147] Q. Li; G. Mathur; M. Homsi; S. Surthi; V. Misra; V. Malinovskii; K.-H. Schweikart; L. Yu; J.S. Lindsey; Z. Liu; R.B. Dabke; A.A. Yasseri; D.F. Bocian; W.G. Kuhr Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on silicon surfaces for memory applications, Appl. Phys. Lett., Volume 81 (2002) no. 8, pp. 1494-1496

[148] K.M. Roth; J.S. Lindsey; D.F. Bocian; W.G. Kuhr Characterization of charge storage in redox-active self-assembled monolayers, Langmuir, Volume 18 (2002) no. 10, pp. 4030-4040

[149] K.M. Roth; A.A. Yasseri; Z. Liu; R.B. Dabke; V. Malinovskii; K.-H. Schweikart; L. Yu; H. Tiznado; F. Zaera; J.S. Lindsey; W.G. Kuhr; D.F. Bocian Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Towards hybrid molecular/semiconductor information storage devices, J. Am. Chem. Soc., Volume 125 (2003) no. 2, pp. 505-517

[150] Z. Liu; A.A. Yasseri; J.S. Lindsey; D.F. Bocian Molecular memories that survive silicon device processing and real-world operation, Science, Volume 302 (2003), pp. 1543-1545

[151] X. Duan; Y. Huang; C.M. Lieber Nonvolatile memory and programmable logic from molecule-gated nanowires, Nano Lett., Volume 2 (2002) no. 5, pp. 487-490

[152] C. Li; W. Fan; B. Lei; D. Zhang; S. Han; T. Tang; X. Liu; Z. Liu; S. Asano; M. Meyyappan; J. Han; C. Zhou Multilevel memory based on molecular devices, Appl. Phys. Lett., Volume 64 (2004) no. 11, pp. 1949-1951

[153] C. Li; J. Ly; B. Lei; W. Fan; D. Zhang; J. Han; M. Meyyappan; M. Thompson; C. Zhou Data storage studies on nanowire transistors with self-assembled phorphyrin molecules, J. Phys. Chem. B, Volume 108 (2004) no. 28, pp. 9646-9649

[154] J. Borghetti; V. Derycke; S. Lenfant; P. Chenevier; A. Filoramo; M. Goffman; D. Vuillaume; J.-P. Bourgoin Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors, Adv. Mat., Volume 18 (2006), pp. 2535-2540

[155] A. Star; Y. Lu; K. Bradley; G. Grüner Nanotube optoelectronic memory devices, Nano Lett., Volume 4 (2004) no. 9, pp. 1587-1591

[156] J.P.A. van der Wagt; A.C. Seabaugh; E.A. Beam RTD/HFET low standby power SRAM gain cell, IEEE Electron Device Lett., Volume 19 (1998) no. 1, pp. 7-9

[157] N.P. Guisinger; M.E. Greene; R. Basu; A.S. Baluch; M.C. Hersam Room temperature negative differential resistance through individual organic molecules on silicon surfaces, Nano Lett., Volume 4 (2004) no. 1, pp. 55-59

[158] T. Rakshit; G.-C. Liang; A.W. Ghosh; S. Datta Silicon-based molecular electronics, Nano Lett., Volume 4 (2004) no. 10, pp. 1803-1807

[159] J.L. Pitters; R.A. Wolkow Detailed studies of molecular conductance using atomic resolution scanning tunneling microscopy, Nano Lett., Volume 6 (2006) no. 3, pp. 390-397

[160] S.Y. Quek; J.B. Neaton; M.S. Hybertsen; E. Kaxiras; S.G. Louie Negative differential resistance in transport through organic molecules on silicon, Phys. Rev. Lett., Volume 98 (2007), p. 066807

[161] A. Dehon; P. Lincoln; J.E. Savage Stochastic assembly of sublithographic nanoscale interfaces, IEEE Trans. Nanotechnol., Volume 2 (2003) no. 3, pp. 165-174

[162] J.M. Tour; W.L. van Zandt; C.P. Husband; S.M. Husband; L.S. Wilson; P.D. Franzon; D.P. Nackashi Nanocell logic gates for molecular computing, IEEE Trans. Nanotechnol., Volume 1 (2002) no. 2, pp. 100-109

[163] K.K. Likharev; D.B. Strukov CMOL: Devices, circuits and architectures (G. Cuniberti, ed.), Introduction to Molecular Electronics, Springer, 2005, pp. 447-477

[164] S.C. Goldstein and M. Budiu, Nanofabrics: spatial computing using molecular electronics, in: Int. Symp. on Computer Architecture, 2001

[165] D.M. Adams; L. Brus; C.E.D. Chidsey; S. Creager; C. Creutz; C.R. Kagan; P.V. Kamat; M. Lieberman; S.M. Lindsay; R.A. Marcus; R.M. Metzger; M.E. Michel-Beyerle; J.R. Miller; M.D. Newton; D.R. Rolison; O. Sankey; K.S. Schanze; J. Yardley; X. Zhu Charge transfer on the nanoscale: Currents status, J. Phys. Chem. B, Volume 107 (2003) no. 28, pp. 6668-6697

[166] A. Nitzan Electron transmission through molecules and molecular interfaces, Annu. Rev. Phys. Chem., Volume 52 (2001), p. 681

[167] N.J. Tao Electron transport in molecular junctions, Nature Nanotechnol., Volume 1 (2006), pp. 173-181

[168] A. Nitzan; M.A. Ratner Electron transport in molecular wire junctions, Science, Volume 300 (2003) no. 5624, pp. 1384-1389

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Carbon nanotube chemistry and assembly for electronic devices

Vincent Derycke; Stéphane Auvray; Julien Borghetti; ...

C. R. Phys (2009)


Theoretical approach to point defects in a single transition metal dichalcogenide monolayer: conductance and force calculations in MoS 2

César González; Yannick J. Dappe

C. R. Phys (2021)


Micro- and nanopatterns of polythiophene covalently bound to silicon

Bruno Fabre; Danial D.M. Wayner

C. R. Chim (2005)