[Effets d'électrodynamique quantique de cavité avec des boîtes quantiques uniques]
Une boîte quantique unique insérée dans la cavité induite par un défaut d'un cristal photonique permet d'étudier les effets d'électrodynamique quantique de cavité en milieu solide. Nous présentons des expériences démontrant la nature quantique de ce système dans le régime de couplage fort. Des mesures de corrélation de photons permettent de caractériser les propriétés fondamentales de ce système original : grâce à ces expériences, nous identifions un mécanisme sous-jacent inattendu et efficace qui assure une émission de cavité intense et est corrélé de manière quantique à la résonnance excitonique, même quand toutes les résonnances de la boîte quantique sont loin de l'accord avec le mode de cavité.
A single quantum dot embedded in a photonic crystal defect cavity allows for the investigation of cavity quantum electrodynamics effects in a solid-state environment. We present experiments demonstrating the quantum nature of this fundamental system in the strong coupling regime. Photon correlation measurements are used to characterize the fundamental properties of this unique system: through these experiments, we identify an unexpected, efficient sustaining mechanism that ensures strong cavity emission and is quantum correlated with the exciton resonance, even when all the quantum dot resonances are far detuned from the cavity mode.
Mots-clés : Semi-conducteur, Cristal photonique, Électrodynamique quantique de cavité, Optiques quantiques, Information quantique
Antonio Badolato 1 ; Martin Winger 1 ; Kevin J. Hennessy 2 ; Evelyn L. Hu 2 ; Ataç Imamoğlu 1
@article{CRPHYS_2008__9_8_850_0, author = {Antonio Badolato and Martin Winger and Kevin J. Hennessy and Evelyn L. Hu and Ata\c{c} Imamo\u{g}lu}, title = {Cavity {QED} effects with single quantum dots}, journal = {Comptes Rendus. Physique}, pages = {850--856}, publisher = {Elsevier}, volume = {9}, number = {8}, year = {2008}, doi = {10.1016/j.crhy.2008.10.015}, language = {en}, }
TY - JOUR AU - Antonio Badolato AU - Martin Winger AU - Kevin J. Hennessy AU - Evelyn L. Hu AU - Ataç Imamoğlu TI - Cavity QED effects with single quantum dots JO - Comptes Rendus. Physique PY - 2008 SP - 850 EP - 856 VL - 9 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2008.10.015 LA - en ID - CRPHYS_2008__9_8_850_0 ER -
Antonio Badolato; Martin Winger; Kevin J. Hennessy; Evelyn L. Hu; Ataç Imamoğlu. Cavity QED effects with single quantum dots. Comptes Rendus. Physique, Recent advances in quantum dot physics / Nouveaux développements dans la physique des boîtes quantiques, Volume 9 (2008) no. 8, pp. 850-856. doi : 10.1016/j.crhy.2008.10.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.015/
[1] Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press, USA, 2006
[2] Single Quantum Dots: Fundamentals, Application and New Concepts (P. Michler, ed.), Springer Series in Topics in Applied Physics, vol. 90, Springer, Berlin, 2003, p. 269
[3] Nature Phys., 2 (2006), pp. 81-90
[4] Nature Photonics, 1 (2007), pp. 449-458
[5] Quantum Dots (NanoScience and Technology), Springer, 1998
[6] Quantum Dot Heterostructures, Wiley, 1999
[7] Physics Today, 54 (2001), p. 46 (and references therein)
[8] Science, 290 (2000), p. 2282
[9] Phys. Rev. Lett., 87 (2001), p. 157401
[10] Phys. Rev. B, 66 (2002), p. R041306
[11] Science, 312 (2006), p. 551
[12] Nature, 445 (2007), p. 896
[13] Nature, 432 (2004), p. 200
[14] Nature, 432 (2004), p. 197
[15] Phys. Rev. Lett., 95 (2005), p. 067401
[16] Nature, 450 (2007), pp. 857-861
[17] Nature, 450 (2007), pp. 862-865
[18] Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, 1999
[19] Opt. Express, 15 (2007), pp. 17206-17213
[20] Appl. Phys. Lett., 90 (2007), p. 101118
[21] Science, 308 (2005), p. 1158
[22] Phys. Rev. Lett., 81 (1998), p. 1110
[23] Lateral Alignment of Epitaxial Quantum Dots (Nanoscience and Technology), Springer, 2007
[24] Appl. Phys. Lett., 92 (2008), p. 263101
[25] Opt. Lett., 33 (2008), p. 1759
[26] arXiv
|[27] Nature, 425 (2003), p. 944
[28] Phys. Rev. Lett., 96 (2006), p. 127404
[29] Appl. Phys. Lett., 85 (2004), p. 3423
[30] arXiv
(Phys. Rev. Lett., in press) |[31] Appl. Phys. Lett., 83 (2003), p. 3650
[32] Appl. Phys. Lett., 90 (2007), p. 031114
[33] Appl. Phys. Lett., 90 (2007), p. 073120
[34] Phys. Rev. Lett., 89 (2002), p. 233602
[35] Appl. Phys. Lett., 87 (2005), p. 031105
[36] Nature Photonics, 1 (2007), p. 704
[37] Appl. Phys. Lett., 92 (2008), p. 011116
[38] Appl. Phys. Lett., 87 (2005), p. 021108
[39] Appl. Phys. Lett., 89 (2006), p. 041118
[40] Phys. Rev. Lett., 95 (2005), p. 153904
[41] Phys. Rev. B, 78 (2008), p. 041401(R)
[42] Opt. Express, 15 (2007), p. 17214
[43] Appl. Phys. Lett., 87 (2006), p. 141105
[44] Appl. Phys. Lett., 88 (2006), p. 043116
[45] Appl. Phys. Lett., 90 (2007), p. 051108
[46] Phys. Rev. B, 60 (1999), pp. 13276-13279
[47] Mesoscopic Quantum Optics, Wiley, 1999
[48] Phys. Rev. B, 51 (1995), pp. 14437-14447
[49] Phys. Rev. Lett., 58 (1987), pp. 353-356
[50] Phys. Rev. Lett., 76 (1996), pp. 1800-1803
[51] Nature, 445 (2007), pp. 515-518
[52] Nature Phys., 4 (2008), pp. 382-385
[53] Nature, 436 (2005), pp. 87-90
[54] Phys. Rev. B, 77 (2008), p. 161303(R)
[55] Phys. Rev. Lett., 98 (2007), p. 117402
[56] A. Badolato, M. Winger, K. Hennessy, E.L. Hu, A. Imamoglu, in preparation
[57] Phys. Rev. B, 72 (2005), p. 233302
- Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity, Acta Physica Sinica, Volume 65 (2016) no. 13, p. 134206 | DOI:10.7498/aps.65.134206
- On-chip electrically controlled routing of photons from a single quantum dot, Applied Physics Letters, Volume 106 (2015) no. 22 | DOI:10.1063/1.4922041
- Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide, Optics Express, Volume 19 (2011) no. 6, p. 5398 | DOI:10.1364/oe.19.005398
- Two-photon transport in a waveguide coupled to a cavity in a two-level system, Physical Review A, Volume 84 (2011) no. 6 | DOI:10.1103/physreva.84.063803
- Non-resonant cavity-quantum dot coupling, Journal of Physics: Conference Series, Volume 210 (2010), p. 012058 | DOI:10.1088/1742-6596/210/1/012058
- Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an off-resonant cavity mode, Physical Review B, Volume 82 (2010) no. 4 | DOI:10.1103/physrevb.82.045307
- Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy, Nature Photonics, Volume 3 (2009) no. 12, p. 724 | DOI:10.1038/nphoton.2009.215
- Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot, Physical Review B, Volume 80 (2009) no. 15 | DOI:10.1103/physrevb.80.155326
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier