Comptes Rendus
Theory and simulation of ion acceleration with circularly polarized laser pulses
[Théorie et simulation de l'accélération des ions par impulsions laser à polarisation circulaire]
Comptes Rendus. Physique, Volume 10 (2009) no. 2-3, pp. 207-215.

L'accélération des ions par la pression de radiation des impulsions laser avec polarisation circulaire a été étudiée à l'aide de modèles analytiques et de simulations “particle-in-cell”. Les deux régimes de cibles épaisses et minces, c'est-à-dire de “hole boring” et “light sail” ont été considérés. Des études paramétriques dans une dimension spatiale ont été réalisées afin de déterminer l'épaisseur optimale des cibles minces et pour étudier l'effet des profils de densité plasma préformés et l'effet de l'ellipticité de l'impulsion dans cibles épaisses. Les simulations tridimensionnelles (3D) montrent que des impulsions avec des profils radiaux plats en intensité sont nécessaires pour prévenir la pénétration de l'impulsion à travers la cible. Les simulations 3D ont aussi été utilisées pour étudier la conservation du moment angulaire de l'impulsion laser et son absorption dans le plasma.

Ion acceleration driven by the radiation pressure of circularly polarized pulses is investigated via analytical modeling and particle-in-cell simulations. Both thick and thin targets, i.e. the “hole boring” and “light sail” regimes are considered. Parametric studies in one spatial dimension are used to determine the optimal thickness of thin targets and to address the effects of preformed plasma profiles and laser pulse ellipticity in thick targets. Three-dimensional (3D) simulations show that “flat-top” radial profiles of the intensity are required to prevent early laser pulse breakthrough in thin targets. The 3D simulations are also used to address the issue of the conservation of the angular momentum of the laser pulse and its absorption in the plasma.

Publié le :
DOI : 10.1016/j.crhy.2009.03.002
Keywords: Laser–plasma acceleration, Ion acceleration, Radiation pressure, Circular polarization
Mot clés : Accéleration laser–plasma, Accélération des ions, Pression de radiation, Polarisation circulaire

Andrea Macchi 1, 2 ; Tatiana V. Liseikina 3 ; Sara Tuveri 2 ; Silvia Veghini 2

1 CNR/INFM/polyLAB, 56127 Pisa, Italy
2 Department of Physics “E. Fermi”, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
3 Max Planck Institute for Nuclear Physics, 69029 Heidelberg, Germany
@article{CRPHYS_2009__10_2-3_207_0,
     author = {Andrea Macchi and Tatiana V. Liseikina and Sara Tuveri and Silvia Veghini},
     title = {Theory and simulation of ion acceleration with circularly polarized laser pulses},
     journal = {Comptes Rendus. Physique},
     pages = {207--215},
     publisher = {Elsevier},
     volume = {10},
     number = {2-3},
     year = {2009},
     doi = {10.1016/j.crhy.2009.03.002},
     language = {en},
}
TY  - JOUR
AU  - Andrea Macchi
AU  - Tatiana V. Liseikina
AU  - Sara Tuveri
AU  - Silvia Veghini
TI  - Theory and simulation of ion acceleration with circularly polarized laser pulses
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 207
EP  - 215
VL  - 10
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.03.002
LA  - en
ID  - CRPHYS_2009__10_2-3_207_0
ER  - 
%0 Journal Article
%A Andrea Macchi
%A Tatiana V. Liseikina
%A Sara Tuveri
%A Silvia Veghini
%T Theory and simulation of ion acceleration with circularly polarized laser pulses
%J Comptes Rendus. Physique
%D 2009
%P 207-215
%V 10
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2009.03.002
%G en
%F CRPHYS_2009__10_2-3_207_0
Andrea Macchi; Tatiana V. Liseikina; Sara Tuveri; Silvia Veghini. Theory and simulation of ion acceleration with circularly polarized laser pulses. Comptes Rendus. Physique, Volume 10 (2009) no. 2-3, pp. 207-215. doi : 10.1016/j.crhy.2009.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.002/

[1] M. Borghesi; J. Fuchs; S.V. Bulanov; A.J. MacKinnon; P.K. Patel; M. Roth Fusion Sci. Technol., 49 (2006), p. 412

[2] T. Esirkepov; M. Borghesi; S.V. Bulanov; G. Mourou; T. Tajima Phys. Rev. Lett., 92 (2004), p. 175003

[3] T. Esirkepov; M. Yamagiwa; T. Tajima Phys. Rev. Lett., 96 (2006), p. 105001

[4] P. Gibbon Short Pulse Laser Interactions with Matter: An Introduction, Imperial College Press, London, 2005

[5] D. Bauer; P. Mulser Phys. Plasmas, 14 (2007), p. 023301

[6] S.D. Baton; J.J. Santos; F. Amiranoff; H. Popescu; L. Gremillet; M. Koenig; E. Martinolli; O. Guilbaud; C. Rousseaux; M. Rabec Le Gloahec; T. Hall; D. Batani; E. Perelli; F. Scianitti; T.E. Cowan Phys. Rev. Lett., 91 (2003), p. 105001

[7] A. Macchi; F. Cattani; T.V. Liseykina; F. Cornolti Phys. Rev. Lett., 94 (2005), p. 165003

[8] T.V. Liseikina; A. Macchi Appl. Phys. Lett., 91 (2007), p. 171502

[9] X. Zhang; B. Shen; X. Li; Z. Jin; F. Wang Phys. Plasmas, 14 (2007), p. 073101

[10] X. Zhang; B. Shen; X. Li; Z. Jin; F. Wang; M. Wen Phys. Plasmas, 14 (2007), p. 123108

[11] A.P.L. Robinson; M. Zepf; S. Kar; R.G. Evans; C. Bellei New J. Phys., 10 (2008), p. 013021

[12] O. Klimo; J. Psikal; J. Limpouch; V.T. Tikhonchuk Phys. Rev. ST Accel. Beams, 11 (2008), p. 031301

[13] X.Q. Yan; C. Lin; Z.M. Sheng; Z.Y. Guo; B.C. Liu; Y.R. Lu; J.X. Fang; J.E. Chen Phys. Rev. Lett., 100 (2008), p. 135003

[14] Y. Yin; W. Yu; M.Y. Yu; A. Lei; X. Yang; H. Xu; V.K. Senecha Phys. Plasmas, 15 (2008), p. 093106

[15] M. Chen; A. Pukhov; Z.M. Sheng; X.Q. Yan Phys. Plasmas, 15 (2008), p. 113103

[16] A.P.L. Robinson; P. Gibbon; M. Zepf; S. Kar; R.G. Evans; C. Bellei Plasma Phys. Controlled Fusion, 51 (2009), p. 024004

[17] T.V. Liseikina; D. Prellino; F. Cornolti; A. Macchi IEEE Trans. Plasma Sci., 36 (2008), p. 1866

[18] T.V. Liseikina; M. Borghesi; A. Macchi; S. Tuveri Plasma Phys. Controlled Fusion, 50 (2008), p. 124033

[19] F. Cattani; A. Kim; D. Anderson; M. Lisak Phys. Rev. E, 62 (2000), p. 1234

[20] D. Prellino, Master's thesis, University of Pisa, Italy, 2007

[21] A. Macchi; F. Ceccherini; F. Cornolti; S. Kar; M. Borghesi Plasma Phys. Controlled Fusion, 51 (2009), p. 024005

[22] S.G. Rykovanov; J. Schreiber; J. Meyer-ter-Vehn; C. Bellei; A. Henig; H.C. Wu; M. Geissler New J. Phys., 10 (2008), p. 113005

[23] V.A. Vshivkov; N.M. Naumova; F. Pegoraro; S.V. Bulanov Phys. Plasmas, 5 (1998), p. 2727

[24] F. Pegoraro; S.V. Bulanov Phys. Rev. Lett., 99 (2007), p. 065002

[25] I.V. Sokolov Sov. Phys. Usp., 34 (1991), p. 925

[26] M.G. Haines Phys. Rev. Lett., 87 (2001), p. 135005

[27] C. Thaury; F. Quéré; J.-P. Geindre; A. Levy; T. Ceccotti; P. Monot; M. Bougeard; F. Réau; P. d'Oliveira; P. Audebert; R. Marjoribanks; Ph. Martin Nat. Phys., 3 (2007), p. 424

[28] J. Badziak; S. Glowacz; S. Jablonski; P. Parys; J. Wolowski; H. Hora; J. Krása; L. Láska; K. Rohlena Plasma Phys. Controlled Fusion, 46 (2004), p. B541

[29] S. Kar; M. Borghesi; S.V. Bulanov; M.H. Key; T.V. Liseykina; A. Macchi; A.J. Mackinnon; P.K. Patel; L. Romagnani; A. Schiavi; O. Willi Phys. Rev. Lett., 100 (2008), p. 225004

[30] K.U. Akli; S.B. Hansen; A.J. Kemp; R.R. Freeman; F.N. Beg; D.C. Clark; S.D. Chen; D. Hey; S.P. Hatchett; K. Highbarger; E. Giraldez; J.S. Green; G. Gregori; K.L. Lancaster; T. Ma; A.J. MacKinnon; P. Norreys; N. Patel; J. Pasley; C. Shearer; R.B. Stephens; C. Stoeckl; M. Storm; W. Theobald; L.D. Van Woerkom; R. Weber; M.H. Key Phys. Rev. Lett., 100 (2008), p. 165002

[31] L.O. Silva; M. Marti; J.R. Davies; R.A. Fonseca; C. Ren; F.S. Tsung; W.B. Mori Phys. Rev. Lett., 92 (2004), p. 015002

Cité par Sources :

Commentaires - Politique