Comptes Rendus
Review of high-energy plasma wakefield experiments
Comptes Rendus. Physique, Laser acceleration of particles in plasma, Volume 10 (2009) no. 2-3, pp. 116-129.

Plasma wakefield accelerator (PWFA) experiments have made considerable progress in the past decade by using high-energy particle beams to drive large amplitude waves or wakes in a plasma. Electron beam driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high-energy betatron radiation photons, particle beam refraction at the plasma/neutral gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100 MeV/m to 50 GeV/m for acceleration have been excited in plasmas with densities of 1014 to 1017 cm3, respectively. The large accelerating gradient led to the energy doubling of 42 GeV electrons in only 85 cm of plasma. Positron beam driven experiments have evidenced the comparatively more complex dynamic and integrated plasma focusing, the subsequent halo formation and emittance growth in the positron beam and demonstrated accelerating gradients of nearly 100 MeV/m. This article summarizes this experimental progress, illustrates the key enabling technologies that made the work possible, concludes with a brief discussion of proposed future directions, and suggests that the PWFA could one day revolutionize e/e+ linear colliders.

Les expériences d'ondes de sillage excitées par faisceaux de particules (PWFA en anglais) ont faits de remarquables progrès durant ces dix dernières années grâce à l'usage de faisceaux de particules de haute énergie pour exciter l'onde. Dans les expériences utilisant des faisceaux d'électrons, la dynamique de la focalisation du faisceau, le flux de photons produit par les oscillations bétatron, la réfraction des particules à l'interface entre le plasma et le gaz neutre, ainsi que la stucture et l'amplitude du champs accélérateur ont été mesurés. Des gradients de champs focalisatieurs du kT/m au MT/m, et des gradients accélérateurs de 100 MeV/m à 50 GeV/m on été excités dans des plasma avec des densités de 1014 à 1017 cm3, respectivement. La grande amplitude du gradient accélérateur a permis de doubler l'énergie des électrons de 42 GeV sur une longueur de seulement 85 cm de plasma. Les expériences avec des faisceaux de positrons ont mis en évidence le coté plus complexe de la dynamique de focalisation des positrons par le plasma, la formation d'un halo de charge autour du faisceau ainsi que la croissance de l'émittance du faisceau qui en découlent, et ont démontré l'excitation de gradients accélérateurs de presque 100 MeV/m. Cette revue résume ces progrès expérimentaux, illustre les technologies clés qui ont permis ces progrès, et se termine par une brève discussion des directions dans lesquelles ces recherches pourraient se diriger dans le futur. Elle suggère également qu'un jour le PWFA pourrait révolutioner le monde des accélérateurs linéaires e/e+.

Published online:
DOI: 10.1016/j.crhy.2009.03.004
Keywords: Plasma-based accelerator, Plasma wakefield accelerator, Electron and positron acceleration, Electron and positron focusing, Betatron radiation
Mots-clés : Acceérateurs plasma, Accélération d'électrons et de positrons, Focalisation d'électrons et de positrons, Radiation bétatron

Patric Muggli 1; Mark J. Hogan 2

1 University of Southern California, Los Angeles, CA 90089, USA
2 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
@article{CRPHYS_2009__10_2-3_116_0,
     author = {Patric Muggli and Mark J. Hogan},
     title = {Review of high-energy plasma wakefield experiments},
     journal = {Comptes Rendus. Physique},
     pages = {116--129},
     publisher = {Elsevier},
     volume = {10},
     number = {2-3},
     year = {2009},
     doi = {10.1016/j.crhy.2009.03.004},
     language = {en},
}
TY  - JOUR
AU  - Patric Muggli
AU  - Mark J. Hogan
TI  - Review of high-energy plasma wakefield experiments
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 116
EP  - 129
VL  - 10
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.03.004
LA  - en
ID  - CRPHYS_2009__10_2-3_116_0
ER  - 
%0 Journal Article
%A Patric Muggli
%A Mark J. Hogan
%T Review of high-energy plasma wakefield experiments
%J Comptes Rendus. Physique
%D 2009
%P 116-129
%V 10
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2009.03.004
%G en
%F CRPHYS_2009__10_2-3_116_0
Patric Muggli; Mark J. Hogan. Review of high-energy plasma wakefield experiments. Comptes Rendus. Physique, Laser acceleration of particles in plasma, Volume 10 (2009) no. 2-3, pp. 116-129. doi : 10.1016/j.crhy.2009.03.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.004/

[1] P. Chen et al. Phys. Rev. Lett., 54 (1985), p. 693

[2] J.B. Rosenzweig et al. Phys. Rev. Lett., 61 (1988), p. 98

[3] S. Lee et al. Phys. Rev. ST Accel. Beams, 5 (2002), p. 121301

[4] B.E. Blue et al. Phys. Rev. Lett., 90 (2003), p. 214801

[5] P. Muggli et al. Phys. Rev. Lett., 93 (2004), p. 014802

[6] M.J. Hogan et al. Phys. Rev. Lett., 95 (2005), p. 054802

[7] I. Blumenfeld et al. Nature, 445 ( 15 February 2007 ), pp. 741-744

[8] S. Wang et al. Phys. Rev. Lett., 88 (2002), p. 135004

[9] D.K. Johnson et al. Phys. Rev. Lett., 97 (2006), p. 175003

[10] E. Oz et al. Phys. Rev. Lett., 98 (2007), p. 084801

[11] N. Kirby, et al., in preparation

[12] S. Lee et al. Phys. Rev. E, 61 (2000), pp. 7014-7021

[13] W. Lu et al. Phys. Plasmas, 12 (2005), p. 063101

[14] H. Braun et al. Phys. Rev. Lett., 90 (2003), p. 224801

[15] R. Hemker, Ph.D. Thesis, UCLA (2000)

[16] J.B. Rosenzweig et al. Phys. Rev. A, 44 (1991), p. R6189

[17] M.J. Hogan et al. Phys. Plasmas, 7 (2000), p. 2241

[18] R. Ischebeck, et al., in: IEEE Particle Accelerator Conference, IEEE, Albuquerque, NM, 2007, p. 4168

[19] P. Emma, et al., Stanford Linear Accelerator Center Report No. SLAC-PUB-8850, 2001 (unpublished)

[20] C.D. Barnes, Ph.D. dissertation, Stanford, 2005

[21] K.L.F. Bane, P. Emma, in: IEEE Particle Accelerator Conference, IEEE, Knoxville, TN, 2005, p. 4266

[22] I. Blumenfeld, et al., in preparation for Phys. Rev. Special Topics AB

[23] C.J. Hirschmugl et al. Phys. Rev. A, 44 (1991), p. 1316

[24] P. Muggli, et al., in: IEEE Particle Accelerator Conference, Knoxville, TN, 2005, p. 4102

[25] C.R. Vidal; J. Cooper J. Appl. Phys., 40 (1969) no. 8, p. 3370

[26] P. Muggli et al. IEEE Trans. Plasma Sci., 27 (1999), p. 791

[27] G.V. Marr Proc. Phys. Soc., 81 (1963), p. 9

[28] M.V. Ammosov; N.B. Delone; V.P. Krainov Sov. Phys. JETP, 64 (1986), p. 1191

[29] C.L. O'Connell et al. Phys. Rev. ST Accel. Beams, 9 (2006), p. 101301

[30] C.E. Clayton et al. Phys. Rev. Lett., 88 (2002), p. 154801

[31] C.L. O'Connell et al. Phys. Rev. ST Accel. Beams, 5 (2002), p. 121301

[32] P. Muggli et al. Nature, 411 ( 03 May 2001 ), p. 43

[33] P. Muggli et al. Phys. Rev. ST Accel. Beams, 4 (2001), p. 091301

[34] M.J. Hogan et al. Phys. Rev. Lett., 90 (2003), p. 205002

[35] J.S.T. Ng et al. Phys. Rev. Lett., 87 (2001), p. 244801

[36] P. Muggli et al. Phys. Rev. Lett., 101 (2008), p. 055001

[37] C. Huang et al. J. Comp. Phys., 217 (2006), p. 658

[38] S. Lee et al. Phys. Rev. E, 64 (2001), p. 045501

[39] P. Muggli, et al., Proceedings PAC 07, 3076

[40] M. Zhou, et al., in preparation and Ph.D. Thesis, UCLA, 2008

[41] N. Kirby, et al., in: IEEE Particle Accelerator Conference, IEEE, Albuquerque, NM, 2007, p. 541

[42] E. Oz, et al., in preparation for Phys. Plasmas

[43] K.A. Marsh, et al., in: IEEE Particle Accelerator Conference, IEEE, Knoxville, TN, 2005, p. 2702

[44] E. Kallos et al. Phys. Rev. Lett., 100 (2008), p. 074802

[45] P. Muggli et al. Phys. Rev. Lett., 101 (2008), p. 054801

[46] X. Wang et al. Phys. Rev. Lett., 101 (2008), p. 124801

[47] D.H. Whittum et al. Phys. Rev. Lett., 67 (1991), p. 991

[48] C. Huang et al. Phys. Rev. Lett., 99 (2007), p. 255001

[49] See for example: ILC Reference Design Report, August 2007, available at http://www.linearcollider.org/cms/?pid=1000025

Cited by Sources:

Comments - Policy