Comptes Rendus
Physics of colliding laser pulses in underdense plasmas
[Physique de la collision d'impulsions laser intenses dans les plasmas sous-denses]
Comptes Rendus. Physique, Volume 10 (2009) no. 2-3, pp. 148-158.

Des résultats récents sur l'accélération d'électrons par collision d'impulsions laser intenses et contre propagatives sont présentés. À la collision, l'interférence des deux impulsions conduit à la génération d'une onde stationnaire qui pré-accélère les électrons du plasma qui, par la suite pourront être piégés dans l'onde de sillage. Les diagnostics optiques de la région de collision mettent en évidence des signatures de la présence de cette onde stationnaire. Une revue des résultats d'accélération d'électrons est ensuite présentée : l'utilisation de la technique d'injection par collision d'impulsions permet la production de faisceaux d'électrons stables, réglables et de haute qualité dans la gamme d'énergie 100–200 MeV. Les simulations PIC en trois dimensions révèlent le rôle important de la dynamique nonlinéaire de la propagation du faisceau pompe et son impact sur les performances de l'accélérateur. La prise en compte de ces effets nous a permis d'optimiser la charge à haute énergie du faisceau d'électrons.

We report on recent experimental results on electron acceleration using two counter-propagating ultrashort and ultraintense laser pulses. At the collision, the two pulses drive a standing wave which is able to pre-accelerate plasma electrons which can then be trapped in the plasma wave. Optical diagnostics of the collision reveal signatures of this standing wave. Electron acceleration results in this regime are reviewed: the use of colliding pulses enables the generation of stable, tunable and high quality electron beams at the 100–200 MeV level. Detailed comparisons with 3D Particle in Cell (PIC) simulations give deeper insight on the role of the nonlinear propagation of the pump pulse on the performance of the accelerator. This deeper understanding has allowed us to optimize the beam charge of the accelerator at high energy.

Publié le :
DOI : 10.1016/j.crhy.2009.03.006
Keywords: Laser–plasma interaction, Electron acceleration, Colliding pulses
Mot clés : Interaction laser–plasma, Accélération d'électrons, Collision d'impulsions laser

Jérôme Faure 1 ; Clément Rechatin 1 ; Ahmed Ben-Ismail 1, 2 ; Jaeku Lim 1 ; Xavier Davoine 3 ; Erik Lefebvre 3 ; Victor Malka 1

1 Laboratoire d'optique appliquée, ENSTA, CNRS, École polytechnique, UMR 7639, 91761 Palaiseau, France
2 Laboratoire Leprince-Ringuet, École polytechnique, CNRS-IN2P3, UMR 7638, 91128 Palaiseau, France
3 CEA, DAM, DIF, Bruyères-le-Châtel, 91297 Arpajon cedex, France
@article{CRPHYS_2009__10_2-3_148_0,
     author = {J\'er\^ome Faure and Cl\'ement Rechatin and Ahmed Ben-Ismail and Jaeku Lim and Xavier Davoine and Erik Lefebvre and Victor Malka},
     title = {Physics of colliding laser pulses in underdense plasmas},
     journal = {Comptes Rendus. Physique},
     pages = {148--158},
     publisher = {Elsevier},
     volume = {10},
     number = {2-3},
     year = {2009},
     doi = {10.1016/j.crhy.2009.03.006},
     language = {en},
}
TY  - JOUR
AU  - Jérôme Faure
AU  - Clément Rechatin
AU  - Ahmed Ben-Ismail
AU  - Jaeku Lim
AU  - Xavier Davoine
AU  - Erik Lefebvre
AU  - Victor Malka
TI  - Physics of colliding laser pulses in underdense plasmas
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 148
EP  - 158
VL  - 10
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.03.006
LA  - en
ID  - CRPHYS_2009__10_2-3_148_0
ER  - 
%0 Journal Article
%A Jérôme Faure
%A Clément Rechatin
%A Ahmed Ben-Ismail
%A Jaeku Lim
%A Xavier Davoine
%A Erik Lefebvre
%A Victor Malka
%T Physics of colliding laser pulses in underdense plasmas
%J Comptes Rendus. Physique
%D 2009
%P 148-158
%V 10
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2009.03.006
%G en
%F CRPHYS_2009__10_2-3_148_0
Jérôme Faure; Clément Rechatin; Ahmed Ben-Ismail; Jaeku Lim; Xavier Davoine; Erik Lefebvre; Victor Malka. Physics of colliding laser pulses in underdense plasmas. Comptes Rendus. Physique, Volume 10 (2009) no. 2-3, pp. 148-158. doi : 10.1016/j.crhy.2009.03.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.006/

[1] T. Tajima; J.M. Dawson Laser electron accelerator, Phys. Rev. Lett., Volume 43 (1979) no. 4, p. 267

[2] S.V. Bulanov et al. Transverse-wake wave breaking, Phys. Rev. Lett., Volume 78 (1997) no. 22, pp. 4205-4208

[3] A. Pukhov; J. Meyer-ter-Vehn Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B, Volume 74 (2002), pp. 355-361

[4] W. Lu et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime, Phys. Rev. Lett., Volume 96 (2006), p. 165002 http://link.aps.org/abstract/PRL/v96/e165002 ([Online]. Available:)

[5] S.P.D. Mangles et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions, Nature, Volume 431 (2004), pp. 535-538

[6] C.G.R. Geddes et al. High quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature, Volume 431 (2004), pp. 538-541

[7] J. Faure et al. A laser–plasma accelerator producing monoenergetic electron beams, Nature, Volume 431 (2004), pp. 541-544

[8] W.P. Leemans et al. GeV electron beams from a centimeter-scale accelerator, Nat. Phys., Volume 2 (2006), pp. 696-699

[9] J. Osterhoff et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell, Phys. Rev. Lett., Volume 101 (2008) no. 8 ([Online]. Available:) | DOI

[10] S.P.D. Mangles et al. On the stability of laser wakefield electron accelerators in the monoenergetic regime, Phys. Plasmas, Volume 14 ( May 2007 ) no. 5, p. 056702

[11] N.A.M. Hafz et al. Stable generation of GeV-class electron beams from self-guided laser–plasma channels, Nat. Photonics, Volume 2 ( Sep. 2008 )

[12] M. Everett et al. Trapped electron acceleration by a laser-driven relativistic plasma wave, Nature, Volume 368 (1994), pp. 527-529

[13] F. Amiranoff et al. Observation of laser wakefield acceleration of electrons, Phys. Rev. Lett., Volume 81 (1998), p. 995

[14] S. Bulanov et al. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking, Phys. Rev. E, Volume 58 ( Nov. 1998 ) no. 5, p. R5257-R5260

[15] C.G.R. Geddes et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches, Phys. Rev. Lett., Volume 100 (2008), p. 215004

[16] C.I. Moore et al. A laser-accelerator injector based on laser ionization and ponderomotive acceleration of electrons, Phys. Rev. Lett., Volume 82 ( Feb. 1999 ) no. 8, pp. 1688-1691

[17] D. Umstadter; J.-K. Kim; E. Dodd Laser injection of ultrashort electron pulses into wakefield plasma waves, Phys. Rev. Lett., Volume 76 (1996), p. 2073

[18] E. Esarey et al. Electron injection into plasma wake fields by colliding laser pulses, Phys. Rev. Lett., Volume 79 (1997), p. 2682

[19] R.G. Hemker et al. Computer simulations of cathodeless, high-brightness electron-beam production by multiple laser beams in plasmas, Phys. Rev. E, Volume 57 ( May 1998 ) no. 5, pp. 5920-5928

[20] G. Fubiani et al. Beatwave injection of electrons into plasma waves using two interfering laser pulses, Phys. Rev. E, Volume 70 (2004), p. 016402

[21] H. Kotaki et al. Head-on injection of a high quality electron beam by the interaction of two laser pulses, Rev. Sci. Instrum., Volume 72 (2004), pp. 2961-2965

[22] J. Faure et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, Volume 444 (2006), pp. 737-739

[23] J. Faure et al. Controlled electron injection in a laser–plasma accelerator, Plasma Phys. Controlled Fusion, Volume 49 (2007), p. B395-B402

[24] J.T. Mendonça Threshold for electron heating by two electromagnetic waves, Phys. Rev. A, Volume 28 (1983) no. 6, pp. 3592-3598

[25] Z.-M. Sheng et al. Stochastic heating and acceleration of electrons in colliding laser fields in plasma, Phys. Rev. Lett., Volume 88 (2002) no. 5, p. 055004

[26] A. Bourdier; D. Patin; E. Lefebvre Stochastic heating in ultra high intensity laser–plasma interaction, Physica D Nonlinear Phenomena, Volume 206 (2005), pp. 1-31

[27] G. Fubiani, Controlled electron injection into plasma accelerators and space charge estimates, Thèse de doctorat, Université Paris XI Orsay, 2005

[28] Y. Glinec et al. Absolute calibration for a broad range single shot electron spectrometer, Rev. Sci. Instrum., Volume 77 (2006), p. 103301

[29] L. Gorbunov; A. Frolov Collision of two short laser pulses in plasma and the generation of short lived Bragg mirrors, Sov. Phys. JETP, Volume 93 (2001), pp. 510-518

[30] P. Zhang et al. An optical trap for relativistic plasma, Phys. Plasmas, Volume 10 (2003), p. 2093

[31] M. Kando et al. Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield, Phys. Rev. Lett., Volume 99 (2007) no. 13, p. 135001 http://link.aps.org/abstract/PRL/v99/e135001 ([Online]. Available:)

[32] A.G.R. Thomas et al. Measurements of wave-breaking radiation from a laser-wakefield accelerator, Phys. Rev. Lett., Volume 98 (2007) no. 5, p. 054802 http://link.aps.org/abstract/PRL/v98/e054802 ([Online]. Available:)

[33] C. Rechatin et al. Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas, New J. Phys., Volume 11 (2009), p. 013011

[34] X. Davoine et al. Simulation of quasimonoenergetic electron beams produced by colliding pulse wakefield acceleration, Phys. Plasmas, Volume 15 (2008), p. 113102

[35] F.S. Tsung et al. Generation of ultra-intense single-cycle laser pulses by using photon deceleration, Proc. Nat. Acad. Sci., Volume 99 (2002) no. 1, pp. 29-32

[36] J. Faure et al. Observation of laser pulse shortening in nonlinear plasma waves, Phys. Rev. Lett., Volume 95 (2005), p. 205003

Cité par Sources :

Commentaires - Politique