[Accélération laser d'électrons dans les plasmas à l'aide d'impulsions formées de quelques cycles]
On présente l'accélération laser d'électrons à l'aide d'implusions laser de 8 fs, ce qui représente 3 cycles optiques, et de 40 mJ seulement. La théorie et les simulations numériques prédisent que ce domaine vierge expérimentalement est pertinent pour l'accélération laser par champ de sillage. Le spectre des électrons produit est monoénergétique avec un pic atteignant 50 MeV et exempt d'une composante thermique de basse énergie. Le faisceau d'électrons a typiquement une divergence de 5–10 mrad. L'accélération se fait à 10 Hz de façon routinière et apparaît donc comme une source prometteuse pour diverses applications.
We report on laser-driven electron acceleration with 8 fs, i.e. three optical cycles, pulse duration and 40 mJ energy. Theory and numerical simulations predict that this experimentally unexplored parameter range is relevant for laser wake-field acceleration. The electron spectra produced are monoenergetic with a peak up to 50 MeV and free of low-energy electrons with thermal spectrum. The electron beam has a typical divergence of 5–10 mrad. The accelerator is routinely operated at 10 Hz and correspondingly it is a promising source for several applications.
Mot clés : Accélération laser d'électrons, Régime de la bulle, Monoénergétique, Impulsion ultra-courte
Laszlo Veisz 1 ; Karl Schmid 1, 2 ; Franz Tavella 1 ; Sofia Benavides 1 ; Raphael Tautz 1 ; Daniel Herrmann 1 ; Alexander Buck 1 ; Bernhard Hidding 3 ; Andrius Marcinkevicius 1 ; Ulrich Schramm 4 ; Michael Geissler 5 ; Jürgen Meyer-ter-Vehn 1 ; Dietrich Habs 2 ; Ferenc Krausz 1, 2
@article{CRPHYS_2009__10_2-3_140_0, author = {Laszlo Veisz and Karl Schmid and Franz Tavella and Sofia Benavides and Raphael Tautz and Daniel Herrmann and Alexander Buck and Bernhard Hidding and Andrius Marcinkevicius and Ulrich Schramm and Michael Geissler and J\"urgen Meyer-ter-Vehn and Dietrich Habs and Ferenc Krausz}, title = {Laser-driven electron acceleration in plasmas with few-cycle pulses}, journal = {Comptes Rendus. Physique}, pages = {140--147}, publisher = {Elsevier}, volume = {10}, number = {2-3}, year = {2009}, doi = {10.1016/j.crhy.2009.03.014}, language = {en}, }
TY - JOUR AU - Laszlo Veisz AU - Karl Schmid AU - Franz Tavella AU - Sofia Benavides AU - Raphael Tautz AU - Daniel Herrmann AU - Alexander Buck AU - Bernhard Hidding AU - Andrius Marcinkevicius AU - Ulrich Schramm AU - Michael Geissler AU - Jürgen Meyer-ter-Vehn AU - Dietrich Habs AU - Ferenc Krausz TI - Laser-driven electron acceleration in plasmas with few-cycle pulses JO - Comptes Rendus. Physique PY - 2009 SP - 140 EP - 147 VL - 10 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2009.03.014 LA - en ID - CRPHYS_2009__10_2-3_140_0 ER -
%0 Journal Article %A Laszlo Veisz %A Karl Schmid %A Franz Tavella %A Sofia Benavides %A Raphael Tautz %A Daniel Herrmann %A Alexander Buck %A Bernhard Hidding %A Andrius Marcinkevicius %A Ulrich Schramm %A Michael Geissler %A Jürgen Meyer-ter-Vehn %A Dietrich Habs %A Ferenc Krausz %T Laser-driven electron acceleration in plasmas with few-cycle pulses %J Comptes Rendus. Physique %D 2009 %P 140-147 %V 10 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2009.03.014 %G en %F CRPHYS_2009__10_2-3_140_0
Laszlo Veisz; Karl Schmid; Franz Tavella; Sofia Benavides; Raphael Tautz; Daniel Herrmann; Alexander Buck; Bernhard Hidding; Andrius Marcinkevicius; Ulrich Schramm; Michael Geissler; Jürgen Meyer-ter-Vehn; Dietrich Habs; Ferenc Krausz. Laser-driven electron acceleration in plasmas with few-cycle pulses. Comptes Rendus. Physique, Volume 10 (2009) no. 2-3, pp. 140-147. doi : 10.1016/j.crhy.2009.03.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.03.014/
[1] Laser electron accelerator, Phys. Rev. Lett., Volume 43 (1979), p. 267
[2] et al. Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B, Volume 74 (2002), p. 355
[3] et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime, Phys. Rev. Lett., Volume 96 (2006), p. 165002
[4] et al. Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers, Phys. Plasmas, Volume 13 (2006), p. 056708
[5] Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons, Phys. Plasmas, Volume 12 (2005), p. 043109
[6] Bubble regime of wake field acceleration: similarity theory and optimal scalings, Philos. Trans. R. Soc. A, Volume 364 (2006), p. 623
[7] et al. Observation of laser-pulse shortening in nonlinear plasma waves, Phys. Rev. Lett., Volume 95 (2005), p. 205003
[8] et al. A laser–plasma accelerator producing monoenergetic electron beams, Nature, Volume 431 (2004), p. 541
[9] et al. Monoenergetic electron beam optimization in the bubble regime, Phys. Plasmas, Volume 12 (2005), p. 056702
[10] et al. High quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature, Volume 431 (2004), p. 538
[11] et al. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators, Phys. Plasmas, Volume 12 (2005), p. 056709
[12] et al. Monoenergetic beams of relativistic electrons from intense laser plasma interactions, Nature, Volume 431 (2004), p. 535
[13] et al. The generation of mono-energetic electron beams from ultrashort pulse laser–plasma interactions, Philos. Trans. R. Soc. A, Volume 364 (2006), p. 663
[14] et al. Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity, Phys. Rev. E, Volume 73 (2006), p. 036407
[15] et al. Studies of laser wakefield structures and electron acceleration in underdense plasmas, Phys. Plasmas, Volume 15 (2008), p. 056703
[16] et al. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses, Phys. Rev. Lett., Volume 96 (2006), p. 105004
[17] et al. GeV electron beams from a centimeter-scale accelerator, Nat. Phys., Volume 2 (2006), p. 696
[18] et al. Laser-driven acceleration of electrons in a partially ionized plasma channel, Phys. Rev. Lett., Volume 100 (2008), p. 105005
[19] et al. GeV-scale electron acceleration in a gas-filled capillary discharge waveguide, New J. Phys., Volume 9 (2007), p. 415
[20] et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, Volume 444 (2006), p. 737
[21] et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell, Phys. Rev. Lett., Volume 101 (2008), p. 085002
[22] et al. Bubble acceleration of electrons with few-cycle laser pulses, New J. Phys., Volume 8 (2006), p. 186
[23] et al. Few-cycle laser-driven electron acceleration, Phys. Rev. Lett., Volume 102 (2009), p. 124801
[24] Femtolasers GmbH, Femtopower Compact Pro
[25] et al. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier, Opt. Lett., Volume 32 (2007), p. 2227
[26] et al. Novel method for characterizing relativistic electron beams in a harsh laser–plasma environment, Rev. Sci. Instrum., Volume 78 (2007), p. 083301
[27] et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels, Phys. Rev. Lett., Volume 83 (1999), p. 4772
[28] et al. Multiple self-injection in the acceleration of monoenergetic electrons by a laser wake field, Phys. Plasmas, Volume 15 (2008), p. 043102
[29] et al. Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator, Phys. Rev. Lett., Volume 96 (2006), p. 095001
[30] et al. Quasi-monoenergetic electron beam generation during laser pulse interaction with very low density plasmas, Phys. Plasmas, Volume 12 (2005), p. 093101
[31] et al. Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator, Phys. Plasmas, Volume 14 (2007), p. 023103
Cité par Sources :
Commentaires - Politique