In this contribution, we present a numerical study of quantum transport in carbon nanotubes based materials. After a brief presentation of the computational approach used to investigate the transport coefficient (Kubo method), the scaling properties of quantum conductance in ballistic regime as well as in the diffusive regimes are illustrated. The impact of elastic (impurities) and dynamical disorders (phonon vibrations) are analyzed separately, with the extraction of main transport length scales (mean free path and localization length), as well as the temperature dependence of the nanotube resistance. The results are found in very good agreement with both analytical results and experimental data, demonstrating the predictability efficiency of our computational strategy.
Dans cet article, nous présentons une étude numérique du transport quantique dans les nanotubes de carbone. Après une présentation de la technique numérique employée pour calculer les coefficients de transport, nous illustrons les propriétés du transport balistique, puis les effets dus au désordre statique et au désordre dynamique (vibrations du réseau). Les caractéristiques des échelles de transport (libre parcours moyen élastique, longueur de localisation) sont explicitées, ainsi que la dépendance en température de la résistance des nanotubes. Les résultats obtenus sont en très bon accord avec les données expérimentales.
Mots-clés : Transport de charges, Désordres statique et dynamique, Conductivité de Kubo–Greenwood, Localisation, Transport balistique
Hiroyuki Ishii 1; François Triozon 2; Nobuhiko Kobayashi 3; Kenji Hirose 4; Stephan Roche 5, 6
@article{CRPHYS_2009__10_4_283_0, author = {Hiroyuki Ishii and Fran\c{c}ois Triozon and Nobuhiko Kobayashi and Kenji Hirose and Stephan Roche}, title = {Charge transport in carbon nanotubes based materials: a {Kubo{\textendash}Greenwood} computational approach}, journal = {Comptes Rendus. Physique}, pages = {283--296}, publisher = {Elsevier}, volume = {10}, number = {4}, year = {2009}, doi = {10.1016/j.crhy.2009.04.003}, language = {en}, }
TY - JOUR AU - Hiroyuki Ishii AU - François Triozon AU - Nobuhiko Kobayashi AU - Kenji Hirose AU - Stephan Roche TI - Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach JO - Comptes Rendus. Physique PY - 2009 SP - 283 EP - 296 VL - 10 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2009.04.003 LA - en ID - CRPHYS_2009__10_4_283_0 ER -
%0 Journal Article %A Hiroyuki Ishii %A François Triozon %A Nobuhiko Kobayashi %A Kenji Hirose %A Stephan Roche %T Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach %J Comptes Rendus. Physique %D 2009 %P 283-296 %V 10 %N 4 %I Elsevier %R 10.1016/j.crhy.2009.04.003 %G en %F CRPHYS_2009__10_4_283_0
Hiroyuki Ishii; François Triozon; Nobuhiko Kobayashi; Kenji Hirose; Stephan Roche. Charge transport in carbon nanotubes based materials: a Kubo–Greenwood computational approach. Comptes Rendus. Physique, Carbon nanotube electronics, Volume 10 (2009) no. 4, pp. 283-296. doi : 10.1016/j.crhy.2009.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.04.003/
[1] Nature, 354 (1991), p. 56
[2] Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998
[3] Ann. Chim. Sci. Mat., 25 (2000), p. 529
[4] Rev. Mod. Phys., 79 (2007), p. 677
[5] et al. Phys. Rev. Lett., 393 (1998), p. 240
[6] Phys. Rev. B, 62 (2000), p. 16092
[7] J. Phys. Soc. Jpn., 67 (1998), pp. 2857-2862
[8] Phys. Rev. Lett., 92 (2004), p. 106804
[9] Nano Lett., 92 (2004), p. 048301
[10] Nature (London), 424 (2003), p. 654
[11] Europhys. Lett., 41 (1998), p. 683
[12] Phys. Rev. B, 71 (2005), p. 045417
[13] Phys. Rev. B, 84 (2002), p. 5002
[14] Phys. Rev. Lett., 94 (2005), p. 086802
[15] Phys. Rev. Lett., 94 (2005), p. 027402
[16] Phys. Rev. Lett., 94 (2005), p. 036801
[17] Phys. Rev. Lett., 93 (2004), p. 237004
[18] Phys. Rev. Lett., 96 (2006), p. 026801
[19] Phys. Rev. B, 65 (2002), p. 235412-11389
[20] Phys. Rev. Lett., 84 (2000), p. 2941
[21] Nano Lett., 4 (2004), p. 517
[22] Phys. Rev. Lett., 95 (2005), p. 155505
[23] Phys. Rev. B, 95 (2005), p. 236802
[24] Europhys. Lett., 71 (2005), p. 438
[25] Phys. Rev. Lett., 95 (2005), p. 076803
[26] Phys. Rev. B, 76 (2007), p. 205432
[27] Appl. Phys. Express, 1 (2008), p. 123002
[28] Phys. Rev. B, 72 (2005), p. 085430
[29] Phys. Rev. Lett., 95 (2005), p. 266803
[30] Phys. Rev. B, 97 (2006), p. 076804
[31] Phys. Rev. B, 78 (2008), p. 035412
[32] Phys. Rev. B, 6 (1988), p. 549
[33] Phys. Rev. B, 59 (1999), p. 2284
[34] Phys. Rev. B, NATO Science Series II: Mathematics, Physics and Chemistry, 87 (2001), p. 246803-165
[35] Phys. Rev. B, 72 (2005), p. 113410
[36] Phys. Rev. B, 74 (2006), p. 245313
[37] Phys. Rev. B, 77 (2008), p. 085301
[38] Phys. Rev. Lett., 100 (2008), p. 036803
[39] Solid State Physics, vol. 35 (H. Ehrenreich; F. Seitz; D. Turnbull, eds.), Academic Press, New York, 1980, p. 215
[40] Recursion Method and its Applications (D.G. Petitfor; D.L. Weaire; V.S. Viswanath; G. Müller, eds.), Springer Series in Solid States Sciences, The Recursion Method: Application to Many-Body Dynamics, Lectures Notes in Physics, vol. 58, Springer Verlag, Berlin, 1985
[41] J. Phys.: Condens. Matter, 72 (2003), pp. 2429-10802
[42] J. Res. Nat. Bur. Stand., 45 (1950), p. 255
[43] et al. Phys. Rev. B, 40 (1989), p. 8404
[44] et al. Phys. Rev. B, 37 (1988), p. 6262
[45] Phys. Rev. B, 12 (1957), p. 570
[46] Appl. Surf. Sci., 254 (2008), p. 7600
[47] Phys. Rev. Lett., 94 (2005), p. 186802
[48] J. Phys. Soc. Jpn., 72 (2003), p. 645
[49] Phys. Rev. B, 51 (1995), p. 12947
[50] J. Phys. Condens. Matter, 19 (2007), p. 183203
[51] Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications, 1989
[52] J. Chem. Phys., 76 (1982), p. 637
[53] Phys. Rev. B, 42 (1990), p. 9458
[54] Phys. Rev. B, 73 (2006), p. 205420
[55] J. Vac. Sci. Technol. B, 27 (2009), p. 882
[56] Phys. Rev. B, 88 (2002), p. 235506
[57] Phys. Rev. B, 95 (2005), p. 266802 (RC)
Cited by Sources:
Comments - Policy