Comptes Rendus
Multiscale simulation of carbon nanotube devices
[Simulation multi-echelle des dispositifs à nanotube de carbone]
Comptes Rendus. Physique, Volume 10 (2009) no. 4, pp. 305-319.

Ces dernières années, la compréhension et la simulation précise des dispositifs à base de nanotubes de carbone est devenue une tâche ambitieuse. Les outils de simulation conventionnels de la microélectronique sont nécessaires pour imaginer les performances et l'utilisation des transistors et des circuits à base de nanotubes, mais les modèles doivent être affinés pour décrire correctement la complexité de ces nouveaux types de dispositifs à l'échelle nanométrique. En effet, de nombreuses questions comme la résistance de contact, l'électrostatique en basse dimensionalité et les effets d'écrantage, ainsi que le dopage ou la fonctionnalisation des nanotubes, nécessitent des approches quantiques plus précises. Dans cet article, nous exposons nos progrès récents sur des simulations multi-échelles qui visent à connecter des calculs basés sur les premiers principes à la modélisation compacte, en passant par la comparaison entre l'approche Monte Carlo semi-classique et le transport quantique.

In recent years, the understanding and accurate simulation of carbon nanotube-based devices has become very challenging. Conventional simulation tools of microelectronics are necessary to envision the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, as well as nanotube doping or functionalization, demand for more accurate quantum approaches. In this article, we review our recent progress on multiscale simulations which aim at bridging first principles calculations with compact modelling, including the comparison between semi-classical Monte Carlo and quantum transport approaches.

Publié le :
DOI : 10.1016/j.crhy.2009.05.004
Keywords: Carbon nanotubes, Simulation, Electronic transport, Transistors, Circuits, Ab initio calculations
Mot clés : Nanotubes de carbone, Simulation, Tranport électronique, Transistors, Circuits, Calculs ab initio
C. Adessi 1 ; R. Avriller 2 ; X. Blase 3 ; A. Bournel 4 ; H. Cazin d'Honincthun 4 ; P. Dollfus 4 ; S. Frégonèse 5 ; S. Galdin-Retailleau 4 ; A. López-Bezanilla 6 ; C. Maneux 5 ; H. Nha Nguyen 4 ; D. Querlioz 4 ; S. Roche 6 ; F. Triozon 7 ; T. Zimmer 5

1 Laboratoire de physique de la matière condensée et des nanostructures, CNRS, université Claude-Bernard Lyon I, UMR 5586, 69622 Villeurbanne cedex, France
2 Departamento de Física Teórica de la Materia Condensada c-v, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
3 Institut Néel, CNRS, université Joseph-Fourier, B.P. 166, 38042 Grenoble cedex 09, France
4 Institut d'électronique fondamentale, CNRS, université Paris-Sud (UMR 8622), 91405 Orsay cedex, France
5 IMS, université Bordeaux 1, CNRS, UMR 5218, 33405 Talence, France
6 Commissariat à l'énergie atomique, INAC, SP2M, L_Sim, 17, rue des Martyrs, 38054 Grenoble cedex, France
7 Commissariat à l'énergie atomique, Leti-MINATEC, 17, rue des Martyrs, 38054 Grenoble cedex, France
@article{CRPHYS_2009__10_4_305_0,
     author = {C. Adessi and R. Avriller and X. Blase and A. Bournel and H. Cazin d'Honincthun and P. Dollfus and S. Fr\'egon\`ese and S. Galdin-Retailleau and A. L\'opez-Bezanilla and C. Maneux and H. Nha Nguyen and D. Querlioz and S. Roche and F. Triozon and T. Zimmer},
     title = {Multiscale simulation of carbon nanotube devices},
     journal = {Comptes Rendus. Physique},
     pages = {305--319},
     publisher = {Elsevier},
     volume = {10},
     number = {4},
     year = {2009},
     doi = {10.1016/j.crhy.2009.05.004},
     language = {en},
}
TY  - JOUR
AU  - C. Adessi
AU  - R. Avriller
AU  - X. Blase
AU  - A. Bournel
AU  - H. Cazin d'Honincthun
AU  - P. Dollfus
AU  - S. Frégonèse
AU  - S. Galdin-Retailleau
AU  - A. López-Bezanilla
AU  - C. Maneux
AU  - H. Nha Nguyen
AU  - D. Querlioz
AU  - S. Roche
AU  - F. Triozon
AU  - T. Zimmer
TI  - Multiscale simulation of carbon nanotube devices
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 305
EP  - 319
VL  - 10
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.05.004
LA  - en
ID  - CRPHYS_2009__10_4_305_0
ER  - 
%0 Journal Article
%A C. Adessi
%A R. Avriller
%A X. Blase
%A A. Bournel
%A H. Cazin d'Honincthun
%A P. Dollfus
%A S. Frégonèse
%A S. Galdin-Retailleau
%A A. López-Bezanilla
%A C. Maneux
%A H. Nha Nguyen
%A D. Querlioz
%A S. Roche
%A F. Triozon
%A T. Zimmer
%T Multiscale simulation of carbon nanotube devices
%J Comptes Rendus. Physique
%D 2009
%P 305-319
%V 10
%N 4
%I Elsevier
%R 10.1016/j.crhy.2009.05.004
%G en
%F CRPHYS_2009__10_4_305_0
C. Adessi; R. Avriller; X. Blase; A. Bournel; H. Cazin d'Honincthun; P. Dollfus; S. Frégonèse; S. Galdin-Retailleau; A. López-Bezanilla; C. Maneux; H. Nha Nguyen; D. Querlioz; S. Roche; F. Triozon; T. Zimmer. Multiscale simulation of carbon nanotube devices. Comptes Rendus. Physique, Volume 10 (2009) no. 4, pp. 305-319. doi : 10.1016/j.crhy.2009.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.05.004/

[1] J.C. Charlier; X. Blase; S. Roche Electronic and transport properties of carbon nanotubes, Rev. Mod. Phys., Volume 79 (2007), p. 677

[2] S.J. Tans; M.H. Devoret; R.J.A. Groeneveld; C. Dekker Room-temperature transistor based on a single carbon nanotube, Nature, Volume 393 (1998), p. 49

[3] S. Heinze; J. Tersoff; R. Martel; V. Derycke; J. Appenzeller; Ph. Avouris Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett., Volume 89 (2002), p. 106801

[4] J. Appenzeller; J. Knoch; V. Derycke; R. Martel; S. Wind; Ph. Avouris Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett., Volume 89 (2002), p. 126801

[5] A. Javey; J. Guo; Q. Wang; M. Lundstrom; H. Dai Ballistic carbon nanotube field-effect transistors, Nature, Volume 424 (2003), p. 654

[6] S. Auvray, et al., Carbon nanotube chemistry and assembly for electronic devices, C. R. Physique, in this issue

[7] S.M. Bachilo; L. Balzano; J.E. Herrera; F. Pompeo; D.E. Resasco; R.B. Weisman Narrow (n,m)-distribution of single walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc., Volume 125 (2003), pp. 11186-11187

[8] G.H. Jeong; A. Yamazaki; S. Susuki; H. Yoshimura; Y. Kobayashi; Y. Homma Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution, J. Am. Chem. Soc., Volume 127 (2005), pp. 8238-8239

[9] M. Lee; J. Im; B.Y. Lee; S. Myung; J. Kang; L. Huang; Y.-K. Kwon; S. Hong Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires, Nature Nanotechnology, Volume 1 (2006), pp. 66-71

[10] M.S. Arnold; A.A. Green; J.F. Hulvat; S.I. Stupp; M.C. Hersam Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, Volume 1 (2006), pp. 60-65

[11] G.H. Jeong; A. Yamazaki; S. Suzuki; H. Yoshimura; Y. Kobayashi; Y. Homma Production of single-walled carbon nanotubes with narrow diameter distribution using iron nanoparticles derived from DNA-binding proteins from starved cells, Carbon, Volume 45 (2007), pp. 978-983

[12] H. Hongo; F. Nihey; Y. Ochiai Horizontally directional single-wall carbon nanotubes grown by chemical vapor deposition with a local electric field, J. Appl. Phys., Volume 101 (2007), p. 024325

[13] Y. Lu; S. Bangsaruntip; X. Wang; L. Zhang; Y. Nishi; H. Dai DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high K dielectrics for nanotube transistors with 60 mV/decade switching, J. Am. Chem. Soc., Volume 128 (2006), pp. 3518-3519

[14] A. Raychowdhury; S. Mukhopadhyay; K. Roy A circuit-compatible model of ballistic carbon nanotube field-effect transistors, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Volume 23 (2004) no. 10, pp. 1411-1420

[15] C. Maneux, J. Goguet, S. Frégonèse, T. Zimmer, H. Cazin d'Honincthun, S. Galdin-Retailleau, Analysis of CNTFET physical compact model, in: Proc. IEEE Int. Conf. Design & Test of Integrated Sys. (DTIS) in Nanoscale Technology, 2006, pp. 40–45

[16] S. Frégonèse; H. Cazin d'Honincthun; J. Goguet; C. Maneux; T. Zimmer; J.P. Bourgoin; P. Dollfus; S. Galdin-Retailleau Computationally efficient physics-based compact CNTFET model for circuit design, IEEE Trans. Electron Devices, Volume 55 (2008) no. 6, pp. 1317-1327

[17] C. Jacoboni; P. Lugli The Monte Carlo Method for Semiconductor Device Simulation, Springer-Verlag, Wien–New York, 1989

[18] C. Jungemann; B. Meinerzhagen Hierarchical Device Simulation: The Monte Carlo Perspective, Springer, Wien–New York, 2003

[19] D. Querlioz; J. Saint-Martin; K. Huet; A. Bournel; V. Aubry-Fortuna; C. Chassat; S. Galdin-Retailleau; P. Dollfus On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation, IEEE Trans. Electron Devices, Volume 54 (2007), pp. 2232-2242

[20] G. Pennington; N. Goldsman Semi-classical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B, Volume 68 (2003), p. 045426

[21] H. Cazin d'Honincthun; S. Galdin-Retailleau; J. Sée; P. Dollfus Electron–phonon scattering and ballistic behaviour in semiconducting carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 172112

[22] A. Verma; et al.; M. Machon et al. Strength of radial breathing mode in single-walled carbon nanotubes, Phys. Rev. B, Volume 87 (2005), p. 123101

[23] H. Nha Nguyen; H. Cazin d'Honincthun; C. Chapus; A. Bournel; S. Galdin-Retailleau; P. Dollfus; N. Locatelli Monte Carlo modeling of Schottky contacts on semiconducting carbon nanotubes, Proc. SISPAD 2007, Vienna, Austria, Springer, 2007, pp. 313-316

[24] S.O. Koswatta; S.H. Hasan; M.S. Lundstrom; M.P. Anantram; D.E. Nikonov IEEE Trans. Electron Devices, 54 (2007), pp. 2339-2351

[25] J. Chaste; L. Lechner; P. Morfin; G. Fève; T. Kontos; J.-M. Berroir; D.C. Glattli; H. Happy; P. Hakonen; B. Plaçais Single carbon nanotube transistor at GHz frequency, Nano Lett., Volume 8 (2008), pp. 525-528

[26] A. Le Louarn; F. Kapche; J.-M. Bethoux; H. Happy; G. Dambrine; V. Derycke; P. Chenevier; N. Izard; M.F. Goffman; J.-P. Bourgoin Intrinsic current gain cutoff frequency of 30 GHz with carbone nanotube transistors, Appl. Phys. Lett., Volume 90 (2007), p. 233108

[27] C. Jacoboni; R. Brunetti; P. Bordone; A. Bertoni Quantum transport and its simulation with the Wigner-function approach, Int. J. High Speed Electronics and Systems, Volume 11 (2001), pp. 387-423

[28] M. Nedjalkov; H. Kosina; S. Selberherr; C. Ringhofer; D.K. Ferry Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices, Phys. Rev. B, Volume 70 (2004), p. 115319

[29] D. Querlioz; P. Dollfus; V. Nam Do; A. Bournel; V. Lien Nguyen An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs, J. Comput. Electronics, Volume 5 (2006), pp. 443-446

[30] D. Querlioz; J. Saint-Martin; A. Bournel; P. Dollfus Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices, Phys. Rev. B, Volume 78 (2008), p. 165306

[31] R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Research and Development, Volume 1 (1957), p. 223

[32] M. Büttiker et al. Generalized many-channel conductance formula with application to small rings, Phys. Rev. B, Volume 31 (1985), p. 6207

[33] C. Caroli et al. Direct calculation of the tunneling current, J. Phys. C, Volume 4 (1971), p. 916

[34] Y. Meir; N.S. Wingreen Landauer formula for the current in an interacting electron region, Phys. Rev. Lett., Volume 68 (1992), p. 2512

[35] R. Lake et al. Single and multiband modeling of quantum electron transport through layered semiconductor devices, J. Appl. Phys., Volume 81 (1997), p. 7845

[36] S. Datta Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, United Kingdom, 1995

[37] S. Datta Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, United Kingdom, 2005

[38] M.P. López Sancho; J.M. López Sancho; J. Rubio Quick iterative scheme for the calculation of transfer matrices: application to Mo(100), J. Phys. F: Met. Phys., Volume 14 (1984), p. 1205

[39] G. Grosso; S. Moroni; G. Pastori Parravicini Electronic structure of the InAs–GaSb superlattice studied by the renormalization method, Phys. Rev. B, Volume 40 (1989), p. 12328

[40] J. Guo; S. Datta; M. Lundstrom A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors, IEEE Trans. Electron Devices, Volume 51 (2004), p. 172

[41] D. Sanchez-Portal; P. Ordejon; E. Artacho; J.M. Soler Density-functional method for very large systems with LCAO basis sets, Int. J. Quantum Chem., Volume 65 (1997), pp. 453-461

[42] Ch. Adessi; S. Roche; X. Blase Reduced backscattering in potassium-doped nanotubes:ab initio and semiempirical simulations, Phys. Rev. B, Volume 73 (2006), p. 125414

[43] R. Avriller; S. Latil; F. Triozon; X. Blase; S. Roche Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes, Phys. Rev. B, Volume 74 (2006), p. 121406(R)

[44] R. Avriller; S. Roche; F. Triozon; X. Blase; S. Latil Low dimensional quantum transport properties of chemically disordered carbon nanotubes: from weak to strong localization regimes, Mod. Phys. Lett. B, Volume 21 (2007), p. 1955

[45] B. Biel; X. Blase; F. Triozon; S. Roche Doping effects on charge transport in graphene nanoribbons, Phys. Rev. Lett., Volume 102 (2009), p. 096803

[46] M.V. Fernández-Serra; Ch. Adessi; X. Blase Surface segregation and backscattering in doped silicon nanowires, Phys. Rev. Lett., Volume 96 (2006), p. 166805

[47] M.V. Fernández-Serra; Ch. Adessi; X. Blase Conductance, surface traps and passivation in doped silicon nanowires, Nano Lett., Volume 6 (2006), pp. 2674-2678

[48] X. Blase; M.V. Fernández-Serra Preserved conductance in covalently functionalized silicon nanowires, Phys. Rev. Lett., Volume 100 (2008), p. 046802

[49] H.J. Choi et al. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett., Volume 84 (2000), p. 2917

[50] Y.-S. Lee; M.B. Nardelli; N. Marzari Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes, Phys. Rev. Lett., Volume 95 (2005), p. 076804

[51] E.R. Margine; M.-L. Bocquet; X. Blase Thermal stability of graphene and nanotubes covalent functionalization, Nano Lett., Volume 8 (2008), p. 3315

[52] Y.-S. Lee; N. Marzari Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes, Phys. Rev. Lett., Volume 97 (2006), p. 116801

[53] C. Gómez-Navarro et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime, Nature Mater., Volume 4 (2005), p. 534

[54] A.R. Rocha et al. Designing real nanotube-based gas sensors, Phys. Rev. Lett., Volume 100 (2008), p. 176803

[55] T. Markussen et al. Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires, Phys. Rev. Lett., Volume 99 (2007), p. 076803

[56] A. López-Bezanilla; F. Triozon; S. Latil; X. Blase; S. Roche Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale, Nano Lett., Volume 9 (2009), p. 940

[57] W. Kim; A. Javey; R. Tu; J. Cao; Q. Wang; H. Dai; Z. Chen et al. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett., Volume 87 (2005), p. 173101

[58] J.J. Palacios; P. Tarakeshwar; D.M. Kim Metal contacts in carbon nanotube field-effect transistors: beyond the schottky paradigm, Phys. Rev. B, Volume 77 (2008), p. 113403

[59] K. Odbadrakh; P. Pomorski; C. Roland Ab initio band bending, metal-induced gap states, and schottky barriers of a carbon and a boron nitride nanotube device, Phys. Rev. B, Volume 73 (2006), p. 233402

[60] R.G. Dandrea; C.B. Duke Calculation of the Schottky barrier height at the Al/GaAs(001) heterojunction: Effect of interfacial atomic relaxations, J. Vac. Sci. Technol. A, Volume 11 (1993), pp. 848-853

[61] F. Léonard; J. Tersoff Role of Fermi-level pinning in nanotube Schottky diodes, Phys. Rev. Lett., Volume 84 (2000), pp. 4693-4696

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

Hugues Cazin d'Honincthun; Sylvie Galdin-Retailleau; Arnaud Bournel; ...

C. R. Phys (2008)


Carbon nanotube chemistry and assembly for electronic devices

Vincent Derycke; Stéphane Auvray; Julien Borghetti; ...

C. R. Phys (2009)


Carbon nanotubes based transistors composed of single-walled carbon nanotubes mats as gas sensors: A review

Paolo Bondavalli

C. R. Phys (2010)