Comptes Rendus
Organisation of carbon nanotubes and semiconductor nanowires using lateral alumina templates
[Organisation de nanotubes de carbones et de nanofils semiconducteurs en utilisant une membrane latérale en alumine nanoporeuse]
Comptes Rendus. Physique, Volume 10 (2009) no. 4, pp. 320-329.

Depuis quelques années, les nanotubes de carbone et les nanofils semiconducteurs sont étudiés pour le remplacement des composants CMOS à base de silicium. Des caractéristiques de transistors à effet de champ impressionnantes ont été obtenues en utilisant ces nanomatériaux. Le problème toutefois est d'organiser les nanotubes et les nanofils en réseaux de transistors avec des densités comparables à celles de leurs homologues en silicium. Nous présentons ici une approche nouvelle, dans laquelle les nanotubes et les nanofils sont organisés par croissance dans des membranes latérales nanoporeuses obtenues par oxydation anodique de films minces d'aluminium. Nous discutons la croissance des nanotubes et des nanofils dans les pores et démontrons la faisabilité de l'approche proposée. Nos premiers résultats indiquent que le contrôle du dépôt, au fond des pores, des nanoparticules catalytiques nécessaires à la nucléation et à la croissance des nanotubes et des nanofils est essentiel pour permettre l'obtention de réseaux denses et organisés, compatibles avec les standards de la microélectronique.

Carbon nanotubes and semiconductor nanowires have been thoroughly studied for the future replacement of silicon-based complementary metal oxide semiconductor (CMOS) devices and circuits. However, the organisation of these nanomaterials in dense transistor arrays, where each device is capable of delivering drive currents comparable with those of their silicon counterparts is still a big challenge. Here, we present a novel approach to the organisation of carbon nanotubes and semiconductor nanowires, based on the use of porous lateral alumina templates obtained by the controlled anodic oxidation of aluminium thin films. We discuss the growth of nanomaterials inside the pores of such templates and show the feasibility of our approach. Our first results point to further work on controlling the synthesis of catalyst nanoparticles at the bottom of the pores, these particles being necessary to nucleate and sustain the growth of carbon nanotubes or semiconductor nanowires.

Publié le :
DOI : 10.1016/j.crhy.2009.05.007
Keywords: Carbon nanotubes, Silicon nanowires, Device applications, Controlled growth and organisation, Templates, Porous anodic alumina
Mot clés : Nanotubes de carbone, Nanofils de silicium, Applications aux dispositifs électroniques, Organisation et croissance contrôlée, Gabarits, Membranes d'alumine poreuses
D. Pribat 1 ; C.S. Cojocaru 1 ; M. Gowtham 1 ; B. Marquardt 1 ; T. Wade 2 ; J.E. Wegrowe 2 ; B.S. Kim 3

1 Laboratoire de physique des interfaces et des couches minces (LPICM), École polytechnique, 91128 Palaiseau cedex, France
2 Laboratoire des solides irradiés (LSI), École polytechnique, 91128 Palaiseau cedex, France
3 Samsung Electronics, Giheung-Gu, Yongin-City, Gyeonggi-Do, Republic of Korea 446-711
@article{CRPHYS_2009__10_4_320_0,
     author = {D. Pribat and C.S. Cojocaru and M. Gowtham and B. Marquardt and T. Wade and J.E. Wegrowe and B.S. Kim},
     title = {Organisation of carbon nanotubes and semiconductor nanowires using lateral alumina templates},
     journal = {Comptes Rendus. Physique},
     pages = {320--329},
     publisher = {Elsevier},
     volume = {10},
     number = {4},
     year = {2009},
     doi = {10.1016/j.crhy.2009.05.007},
     language = {en},
}
TY  - JOUR
AU  - D. Pribat
AU  - C.S. Cojocaru
AU  - M. Gowtham
AU  - B. Marquardt
AU  - T. Wade
AU  - J.E. Wegrowe
AU  - B.S. Kim
TI  - Organisation of carbon nanotubes and semiconductor nanowires using lateral alumina templates
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 320
EP  - 329
VL  - 10
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.05.007
LA  - en
ID  - CRPHYS_2009__10_4_320_0
ER  - 
%0 Journal Article
%A D. Pribat
%A C.S. Cojocaru
%A M. Gowtham
%A B. Marquardt
%A T. Wade
%A J.E. Wegrowe
%A B.S. Kim
%T Organisation of carbon nanotubes and semiconductor nanowires using lateral alumina templates
%J Comptes Rendus. Physique
%D 2009
%P 320-329
%V 10
%N 4
%I Elsevier
%R 10.1016/j.crhy.2009.05.007
%G en
%F CRPHYS_2009__10_4_320_0
D. Pribat; C.S. Cojocaru; M. Gowtham; B. Marquardt; T. Wade; J.E. Wegrowe; B.S. Kim. Organisation of carbon nanotubes and semiconductor nanowires using lateral alumina templates. Comptes Rendus. Physique, Volume 10 (2009) no. 4, pp. 320-329. doi : 10.1016/j.crhy.2009.05.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.05.007/

[1] H. Dai; A. Javey; E. Pop; D. Mann; W. Kim; Y. Lu; Ph. Avouris; J. Chen Mater. Today, 1 ( October 2006 ), pp. 1-13 (For recent reviews on CNT-based devices, see e.g. and references therein)

[2] See e.g., “Emerging Research Devices” in the 2007 International Technology Roadmap for Semiconductors, http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_ERD.pdf

[3] See: http://www.intel.com/technology/architecture-silicon/32nm/index.htm?iid=tech_as+silicon_32nm

[4] E.S. Snow; J.P. Novak; P.M. Campbell; D. Park Appl. Phys. Lett., 82 (2003), pp. 2145-2147

[5] Q. Cao; H-s. Kim; N. Pimparkar; J.P. Kulkarni; C. Wang; M. Shim; K. Roy; M.A. Alam; J.A. Rogers Nature, 454 (2008), pp. 495-500

[6] A. Javey; J. Guo; Q. Wang; M. Lundstrom; H. Dai; S.J. Wind; J. Appenzeller; Ph. Avouris Phys. Rev. Lett., 424 (2003), pp. 654-657 (Ballistic devices that can carry higher currents are not considered here. See)

[7] S.J. Wind; J. Appenzeller; R. Martel; V. Dericke; Ph. Avouris Appl. Phys. Lett., 80 (2002), pp. 3817-3819

[8] A. Javey; H. Kim; M. Brink; Q. Wang; A. Ural; J. Guo; P. McIntyre; P. McEuen; M. Lundstrom; H. Dai Nature Mat., 1 (2002), pp. 241-246

[9] S.J. Kang; C. Kocabas; T. Ozel; M. Shim; N. Pimparkar; M.A. Alam; S.V. Rotkin; J.A. Rogers Nature Nanotech., 2 (2007), pp. 230-236

[10] K.H. Choi; J.P. Bourgoin; S. Auvray; D. Estève; G.G. Duesberg; S. Roth; M. Burghard Surf. Sci., 462 (2000), pp. 195-202

[11] L. Ding; D. Yuan; J. Liu J. Am. Chem. Soc., 130 (2008), pp. 5428-5430

[12] K. Ryu; A. Badmaev; C. Wang; A. Lin; N. Patil; L. Gomez; A. Kumar; S. Mitra; H.-S.P. Wong; C. Zhou Nano Lett., 9 (2009), pp. 189-195

[13] Z. Fan; J.C. Ho; Z.A. Jacobson; R. Yerushalmi; R.L. Alley; H. Razavi; A. Javey Nano Lett., 8 (2008), pp. 20-25

[14] T.L. Wade; J.E. Wegrowe Eur. Phys. J. Appl. Phys., 29 (2005), pp. 3-22

[15] L. Dauginet-De Pra; E. Ferrain; R. Legras; S. Demoustier-Champagne Nucl. Instrum. Methods Phys. Res. B, 196 (2002), pp. 81-88

[16] T.L. Wade; C. Cojocaru; J.E. Wegrowe; D. Pribat Nanostructures in Electronics and Photonics (F. Rahman, ed.), Pan Stanford Publishing, 2008, pp. 41-61 (See e.g. Nanoporous alumina templates for nanowire electron devices and references therein)

[17] H. Masuda; K. Fukuda Science, 268 (1995), pp. 1466-1468

[18] K. Nielsch; J. Choi; K. Schwirn; R.B. Wehrspohn; U. Gosële; D. Crouse; Y.H. Lo; A.E. Miller; M. Crouse Appl. Phys. Lett., 2 (2002), pp. 677-680

[19] J. Li; C. Papadopoulos; J.M. Xu; M. Moskovits Appl. Phys. Lett., 75 (1999), pp. 367-369

[20] M.R. Maschmann; A.D. Franklin; A. Scott; D.B. Janes; T.D. Sands; T.S. Fisher Nano Lett., 6 (2006), pp. 2712-2717

[21] T.E. Bogart; S. Dey; K.-K. Lew; S.E. Mohney; J.M. Redwing Adv. Mater., 17 (2005), pp. 114-117

[22] R.S. Wagner; W.C. Ellis Appl. Phys. Lett., 4 (1964), pp. 89-91

[23] Y. Cui; L.J. Lauhon; M.S. Gudiksen; J. Wang; C.M. Lieber Appl. Phys. Lett., 78 (2001), pp. 2214-2216

[24] R.E. Smalley; Y. Li; V.C. Moore; K. Price; R. Colorado; H.K. Schmidt; R.H. Hauge; A.R. Barron; J.M. Tour J. Am. Chem. Soc., 128 (2006), pp. 15824-15831

[25] M.S. Gudiksen; C.M. Lieber J. Am. Chem. Soc., 122 (2000), pp. 8801-8805

[26] T. Yamada; T. Namai; K. Hata; D.N. Futaba; K. Mizuno; J. Fan; M. Yudasaka; M. Yumura; S. Iijima; H.J. Jeong; L. Eude; M. Gowtham; B. Marquardt; S.H. Lim; S. Enouz; C.S. Cojocaru; K.A. Park; Y.H. Lee; D. Pribat Nano, 1 (2006), pp. 131-136

[27] J.B. Hannon; S. Kodambaka; F.M. Ross; R.M. Tromp; P.B. Amama; C.L. Pint; L. McJilton; S.M. Kim; E.A. Stach; P.T. Murray; R.H. Hauge; B. Maruyama Nano Lett., 440 (2006), pp. 69-72

[28] B. Marquardt; L. Eude; M. Gowtham; G.S. Cho; H.J. Jeong; M. Châtelet; C.S. Cojocaru; B.S. Kim; D. Pribat Nanotechnology, 19 (2008), pp. 405607-405612

[29] C.S. Cojocaru; J.M. Padovani; T. Wade; C. Mandoli; G. Jaskierowicz; J.E. Wegrowe; A. Fontcuberta y Morral; D. Pribat Nano Lett., 4 (2005), pp. 675-680

[30] M. Gowtham; L. Eude; C.S. Cojocaru; B. Marquardt; H.J. Jeong; P. Legagneux; K.K. Song; D. Pribat Nanotechnology, 19 (2008), pp. 035303-035308

[31] D. Pribat, C.S. Cojocaru, J.M. Padovani, T. Wade, C. Mandoli, G. Jaskierowicz, A. Fontcuberta i Morral, J.E. Wegrowe, in: Proceedings of the 2005 SPIE “Quantum Sensing and Nanophotonic Devices II”, vol. 5732, pp. 58–66

[32] J. Choi; G. Sauer; K. Nielsch; R.B. Wehrspohn; U. Gosele Chem. Mater., 15 (2003), pp. 776-780

[33] H.V. Nguyen; I. An; R.W. Collins; Y. Lu; M. Wakagi; C.R. Wronski Appl. Phys. Lett., 65 (1994), pp. 3335-3337 (See e.g.)

[34] K. Hata; D.N. Futaba; K. Mizuno; T. Namai; M. Yumura; S. Iijima Science, 306 (2004), pp. 1362-1365

[35] C.S. Cojocaru, S.H. Lim, A.J. Guilley, N. Le Sech, S. Xavier, P. Legagneux, D. Pribat, submitted for publication

[36] D. Pribat, C. Cojocaru and M. Gowtham, patent pending

[37] D. Pribat; C.S. Cojocaru; M. Gowtham; L. Eude; P. Bondavalli; P. Legagneux J. Soc. Inf. Displays, 15 (2007), pp. 595-600

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Electrochemical fabrication of tin nanowires: A short review

Thierry Djenizian; Ilie Hanzu; Marielle Eyraud; ...

C. R. Chim (2008)


Carbon nanotube chemistry and assembly for electronic devices

Vincent Derycke; Stéphane Auvray; Julien Borghetti; ...

C. R. Phys (2009)