In recent years, the understanding and accurate simulation of carbon nanotube-based devices has become very challenging. Conventional simulation tools of microelectronics are necessary to envision the performance and use of nanotube transistors and circuits, but the models need to be refined to properly describe the full complexity of such novel type of devices at the nanoscale. Indeed, many issues such as contact resistance, low dimensional electrostatics and screening effects, as well as nanotube doping or functionalization, demand for more accurate quantum approaches. In this article, we review our recent progress on multiscale simulations which aim at bridging first principles calculations with compact modelling, including the comparison between semi-classical Monte Carlo and quantum transport approaches.
Ces dernières années, la compréhension et la simulation précise des dispositifs à base de nanotubes de carbone est devenue une tâche ambitieuse. Les outils de simulation conventionnels de la microélectronique sont nécessaires pour imaginer les performances et l'utilisation des transistors et des circuits à base de nanotubes, mais les modèles doivent être affinés pour décrire correctement la complexité de ces nouveaux types de dispositifs à l'échelle nanométrique. En effet, de nombreuses questions comme la résistance de contact, l'électrostatique en basse dimensionalité et les effets d'écrantage, ainsi que le dopage ou la fonctionnalisation des nanotubes, nécessitent des approches quantiques plus précises. Dans cet article, nous exposons nos progrès récents sur des simulations multi-échelles qui visent à connecter des calculs basés sur les premiers principes à la modélisation compacte, en passant par la comparaison entre l'approche Monte Carlo semi-classique et le transport quantique.
Mot clés : Nanotubes de carbone, Simulation, Tranport électronique, Transistors, Circuits, Calculs ab initio
C. Adessi 1; R. Avriller 2; X. Blase 3; A. Bournel 4; H. Cazin d'Honincthun 4; P. Dollfus 4; S. Frégonèse 5; S. Galdin-Retailleau 4; A. López-Bezanilla 6; C. Maneux 5; H. Nha Nguyen 4; D. Querlioz 4; S. Roche 6; F. Triozon 7; T. Zimmer 5
@article{CRPHYS_2009__10_4_305_0, author = {C. Adessi and R. Avriller and X. Blase and A. Bournel and H. Cazin d'Honincthun and P. Dollfus and S. Fr\'egon\`ese and S. Galdin-Retailleau and A. L\'opez-Bezanilla and C. Maneux and H. Nha Nguyen and D. Querlioz and S. Roche and F. Triozon and T. Zimmer}, title = {Multiscale simulation of carbon nanotube devices}, journal = {Comptes Rendus. Physique}, pages = {305--319}, publisher = {Elsevier}, volume = {10}, number = {4}, year = {2009}, doi = {10.1016/j.crhy.2009.05.004}, language = {en}, }
TY - JOUR AU - C. Adessi AU - R. Avriller AU - X. Blase AU - A. Bournel AU - H. Cazin d'Honincthun AU - P. Dollfus AU - S. Frégonèse AU - S. Galdin-Retailleau AU - A. López-Bezanilla AU - C. Maneux AU - H. Nha Nguyen AU - D. Querlioz AU - S. Roche AU - F. Triozon AU - T. Zimmer TI - Multiscale simulation of carbon nanotube devices JO - Comptes Rendus. Physique PY - 2009 SP - 305 EP - 319 VL - 10 IS - 4 PB - Elsevier DO - 10.1016/j.crhy.2009.05.004 LA - en ID - CRPHYS_2009__10_4_305_0 ER -
%0 Journal Article %A C. Adessi %A R. Avriller %A X. Blase %A A. Bournel %A H. Cazin d'Honincthun %A P. Dollfus %A S. Frégonèse %A S. Galdin-Retailleau %A A. López-Bezanilla %A C. Maneux %A H. Nha Nguyen %A D. Querlioz %A S. Roche %A F. Triozon %A T. Zimmer %T Multiscale simulation of carbon nanotube devices %J Comptes Rendus. Physique %D 2009 %P 305-319 %V 10 %N 4 %I Elsevier %R 10.1016/j.crhy.2009.05.004 %G en %F CRPHYS_2009__10_4_305_0
C. Adessi; R. Avriller; X. Blase; A. Bournel; H. Cazin d'Honincthun; P. Dollfus; S. Frégonèse; S. Galdin-Retailleau; A. López-Bezanilla; C. Maneux; H. Nha Nguyen; D. Querlioz; S. Roche; F. Triozon; T. Zimmer. Multiscale simulation of carbon nanotube devices. Comptes Rendus. Physique, Volume 10 (2009) no. 4, pp. 305-319. doi : 10.1016/j.crhy.2009.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.05.004/
[1] Electronic and transport properties of carbon nanotubes, Rev. Mod. Phys., Volume 79 (2007), p. 677
[2] Room-temperature transistor based on a single carbon nanotube, Nature, Volume 393 (1998), p. 49
[3] Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett., Volume 89 (2002), p. 106801
[4] Field-modulated carrier transport in carbon nanotube transistors, Phys. Rev. Lett., Volume 89 (2002), p. 126801
[5] Ballistic carbon nanotube field-effect transistors, Nature, Volume 424 (2003), p. 654
[6] S. Auvray, et al., Carbon nanotube chemistry and assembly for electronic devices, C. R. Physique, in this issue
[7] Narrow -distribution of single walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc., Volume 125 (2003), pp. 11186-11187
[8] Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution, J. Am. Chem. Soc., Volume 127 (2005), pp. 8238-8239
[9] Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires, Nature Nanotechnology, Volume 1 (2006), pp. 66-71
[10] Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, Volume 1 (2006), pp. 60-65
[11] Production of single-walled carbon nanotubes with narrow diameter distribution using iron nanoparticles derived from DNA-binding proteins from starved cells, Carbon, Volume 45 (2007), pp. 978-983
[12] Horizontally directional single-wall carbon nanotubes grown by chemical vapor deposition with a local electric field, J. Appl. Phys., Volume 101 (2007), p. 024325
[13] DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high K dielectrics for nanotube transistors with 60 mV/decade switching, J. Am. Chem. Soc., Volume 128 (2006), pp. 3518-3519
[14] A circuit-compatible model of ballistic carbon nanotube field-effect transistors, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Volume 23 (2004) no. 10, pp. 1411-1420
[15] C. Maneux, J. Goguet, S. Frégonèse, T. Zimmer, H. Cazin d'Honincthun, S. Galdin-Retailleau, Analysis of CNTFET physical compact model, in: Proc. IEEE Int. Conf. Design & Test of Integrated Sys. (DTIS) in Nanoscale Technology, 2006, pp. 40–45
[16] Computationally efficient physics-based compact CNTFET model for circuit design, IEEE Trans. Electron Devices, Volume 55 (2008) no. 6, pp. 1317-1327
[17] The Monte Carlo Method for Semiconductor Device Simulation, Springer-Verlag, Wien–New York, 1989
[18] Hierarchical Device Simulation: The Monte Carlo Perspective, Springer, Wien–New York, 2003
[19] On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation, IEEE Trans. Electron Devices, Volume 54 (2007), pp. 2232-2242
[20] Semi-classical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B, Volume 68 (2003), p. 045426
[21] Electron–phonon scattering and ballistic behaviour in semiconducting carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 172112
[22] et al. Strength of radial breathing mode in single-walled carbon nanotubes, Phys. Rev. B, Volume 87 (2005), p. 123101
[23] Monte Carlo modeling of Schottky contacts on semiconducting carbon nanotubes, Proc. SISPAD 2007, Vienna, Austria, Springer, 2007, pp. 313-316
[24] IEEE Trans. Electron Devices, 54 (2007), pp. 2339-2351
[25] Single carbon nanotube transistor at GHz frequency, Nano Lett., Volume 8 (2008), pp. 525-528
[26] Intrinsic current gain cutoff frequency of 30 GHz with carbone nanotube transistors, Appl. Phys. Lett., Volume 90 (2007), p. 233108
[27] Quantum transport and its simulation with the Wigner-function approach, Int. J. High Speed Electronics and Systems, Volume 11 (2001), pp. 387-423
[28] Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices, Phys. Rev. B, Volume 70 (2004), p. 115319
[29] An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs, J. Comput. Electronics, Volume 5 (2006), pp. 443-446
[30] Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices, Phys. Rev. B, Volume 78 (2008), p. 165306
[31] Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Research and Development, Volume 1 (1957), p. 223
[32] et al. Generalized many-channel conductance formula with application to small rings, Phys. Rev. B, Volume 31 (1985), p. 6207
[33] et al. Direct calculation of the tunneling current, J. Phys. C, Volume 4 (1971), p. 916
[34] Landauer formula for the current in an interacting electron region, Phys. Rev. Lett., Volume 68 (1992), p. 2512
[35] et al. Single and multiband modeling of quantum electron transport through layered semiconductor devices, J. Appl. Phys., Volume 81 (1997), p. 7845
[36] Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, United Kingdom, 1995
[37] Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, United Kingdom, 2005
[38] Quick iterative scheme for the calculation of transfer matrices: application to Mo(100), J. Phys. F: Met. Phys., Volume 14 (1984), p. 1205
[39] Electronic structure of the InAs–GaSb superlattice studied by the renormalization method, Phys. Rev. B, Volume 40 (1989), p. 12328
[40] A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors, IEEE Trans. Electron Devices, Volume 51 (2004), p. 172
[41] Density-functional method for very large systems with LCAO basis sets, Int. J. Quantum Chem., Volume 65 (1997), pp. 453-461
[42] Reduced backscattering in potassium-doped nanotubes:ab initio and semiempirical simulations, Phys. Rev. B, Volume 73 (2006), p. 125414
[43] Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes, Phys. Rev. B, Volume 74 (2006), p. 121406(R)
[44] Low dimensional quantum transport properties of chemically disordered carbon nanotubes: from weak to strong localization regimes, Mod. Phys. Lett. B, Volume 21 (2007), p. 1955
[45] Doping effects on charge transport in graphene nanoribbons, Phys. Rev. Lett., Volume 102 (2009), p. 096803
[46] Surface segregation and backscattering in doped silicon nanowires, Phys. Rev. Lett., Volume 96 (2006), p. 166805
[47] Conductance, surface traps and passivation in doped silicon nanowires, Nano Lett., Volume 6 (2006), pp. 2674-2678
[48] Preserved conductance in covalently functionalized silicon nanowires, Phys. Rev. Lett., Volume 100 (2008), p. 046802
[49] et al. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett., Volume 84 (2000), p. 2917
[50] Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes, Phys. Rev. Lett., Volume 95 (2005), p. 076804
[51] Thermal stability of graphene and nanotubes covalent functionalization, Nano Lett., Volume 8 (2008), p. 3315
[52] Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes, Phys. Rev. Lett., Volume 97 (2006), p. 116801
[53] et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime, Nature Mater., Volume 4 (2005), p. 534
[54] et al. Designing real nanotube-based gas sensors, Phys. Rev. Lett., Volume 100 (2008), p. 176803
[55] et al. Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires, Phys. Rev. Lett., Volume 99 (2007), p. 076803
[56] Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale, Nano Lett., Volume 9 (2009), p. 940
[57] et al. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett., Volume 87 (2005), p. 173101
[58] Metal contacts in carbon nanotube field-effect transistors: beyond the schottky paradigm, Phys. Rev. B, Volume 77 (2008), p. 113403
[59] Ab initio band bending, metal-induced gap states, and schottky barriers of a carbon and a boron nitride nanotube device, Phys. Rev. B, Volume 73 (2006), p. 233402
[60] Calculation of the Schottky barrier height at the Al/GaAs(001) heterojunction: Effect of interfacial atomic relaxations, J. Vac. Sci. Technol. A, Volume 11 (1993), pp. 848-853
[61] Role of Fermi-level pinning in nanotube Schottky diodes, Phys. Rev. Lett., Volume 84 (2000), pp. 4693-4696
Cited by Sources:
Comments - Politique