Efficient slow and fast light fiber devices based on narrow band optical parametric amplification require a strict polarization control of the waves involved in the interaction. The use of high birefringence and spun fibers is studied theoretically, possible impairments evaluated, and design parameters determined.
Le ralentissement ou l'accélération de la lumière basés sur l'amplification paramétrique à bande étroite dans des fibres optiques requièrent un contrôle précis de la polarisation des ondes impliquées dans l'interaction. L'utilisation de fibres à haute biréfringence, ou de fibres « spun » a été étudiée théoriquement, les sources de dégradation éventuelles analysées et des critères de conception proposés.
Mots-clés : Biréfringence, Polarisation, Oscillateurs et amplificateurs paramétriques, Autres montages à fibres optiques
Marco Santagiustina 1; Luca Schenato 1; C.G. Someda 1
@article{CRPHYS_2009__10_10_980_0, author = {Marco Santagiustina and Luca Schenato and C.G. Someda}, title = {Polarization control for slow and fast light in fiber optical, {Raman-assisted,} parametric amplification}, journal = {Comptes Rendus. Physique}, pages = {980--990}, publisher = {Elsevier}, volume = {10}, number = {10}, year = {2009}, doi = {10.1016/j.crhy.2009.09.002}, language = {en}, }
TY - JOUR AU - Marco Santagiustina AU - Luca Schenato AU - C.G. Someda TI - Polarization control for slow and fast light in fiber optical, Raman-assisted, parametric amplification JO - Comptes Rendus. Physique PY - 2009 SP - 980 EP - 990 VL - 10 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2009.09.002 LA - en ID - CRPHYS_2009__10_10_980_0 ER -
%0 Journal Article %A Marco Santagiustina %A Luca Schenato %A C.G. Someda %T Polarization control for slow and fast light in fiber optical, Raman-assisted, parametric amplification %J Comptes Rendus. Physique %D 2009 %P 980-990 %V 10 %N 10 %I Elsevier %R 10.1016/j.crhy.2009.09.002 %G en %F CRPHYS_2009__10_10_980_0
Marco Santagiustina; Luca Schenato; C.G. Someda. Polarization control for slow and fast light in fiber optical, Raman-assisted, parametric amplification. Comptes Rendus. Physique, Slow-light: Fascinating physics or potential applications?, Volume 10 (2009) no. 10, pp. 980-990. doi : 10.1016/j.crhy.2009.09.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.09.002/
[1] Tunable all optical delay via slow and fast light propagation in Raman assisted fiber optical parametric amplifier: A route to all optical buffering, Opt. Express, Volume 16 (2005), pp. 6234-6249
[2] Large tunable delay with low distortion of 10 Gbit/s data in slow light system based on narrow band fiber parametric amplification, Opt. Express, Volume 14 (2006), pp. 8540-8545
[3] E. Shumakher, R. Blit, A. Willinger, D. Dahan, G. Eisenstein, Large delay and low distortion of a 40 Gbit/s signal propagating in a slow light system based on parametric amplification in optical fibers, ECOC 2006, We4.3.4, 2006
[4] M. Santagiustina, L. Schenato, C.G. Someda, Fundamental limit of the achievable time delay in slow-light NB-OPA, IEEE–LEOS Winter Topicals Conference 2008, TuB1.5, 2008
[5] E. Shumakher, A. Willinger, G. Eisenstein, High resolution extraction of fiber propagation parameters for accurate modeling of slow light systems based on narrow band optical parametric amplification, OFC 2007, OTuC2, 2007
[6] M. Santagiustina, C.G. Someda, L. Schenato, L. Palmieri, A. Galtarossa, E. Bettini, Optical parametric amplification for slow light in random birefringence fibers, IEEE Photonics in Switching 2007, TuB1.2, 2007
[7] Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber, J. Lightwave Technol., Volume 15 (1997), pp. 135-143
[8] Four-wave mixing in fibers with randomly birefringent zero-dispersion wavelength, JOSA B, Volume 9 (1998), pp. 2269-2275
[9] Fiber optical parametric amplifiers with linearly or circularly polarized waves, JOSA B, Volume 20 (2003), pp. 2425-2433
[10] Vector theory of four-wave mixing: Polarization effects in fiber-optic parametric amplifiers, JOSA B, Volume 21 (2004), pp. 1216-1224
[11] Statistical theory of polarization mode dispersion in single mode fibers, J. Lightwave Technol., Volume 9 (1991), pp. 1439-1456
[12] PMD fundamentals: Polarization mode dispersion in optical fibers, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), pp. 4541-4550
[13] Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion, Opt. Lett., Volume 29 (2004), pp. 1114-1116
[14] On the role of polarization and Raman assisted phase matching in narrow band fiber parametric amplifiers, J. Lightwave Technol., Volume 26 (2008), pp. 2260-2268
[15] Slow and fast light propagation in narrow band Raman-assisted fiber parametric amplifiers (J.B. Khurgin; R.S. Tucker, eds.), Slow Light: Science and Applications, CRC Press, 2008, pp. 149-172
[16] Fundamental and random birefringence limitations to delay in slow light fiber parametric amplification, J. Lightwave Technol., Volume 26 (2008), pp. 3721-3726
[17] L. Schenato, M. Santagiustina, C.G. Someda, Narrow band optical parametric amplification for slow light in randomly birefringent fibers, OFC 2008, JThA3, 2008
[18] Pump-intensity-dependent frequency shift in Stokes and anti-Stokes spectra generated by stimulated four-photon mixing in birefringent fiber, Appl. Opt., Volume 26 (1987), pp. 2974-2978
[19] Polarized backward Raman amplification in unidirectionally spun fibers, IEEE Phot. Technol. Lett., Volume 20 (2008), pp. 27-29
[20] Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers, IEEE Phot. Technol. Lett., Volume 20 (2008), pp. 1420-1422
[21] H. Ferraro, A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, Unidirectionally spun fibers for efficient narrow-band parametric amplification, OFC 2009, JWA14, 2009
[22] M. Santagiustina, L. Schenato, Parametric amplification in randomly birefringent and spun fibers, IEEE Phot. Technol. Lett. (2009), submitted for publication
[23] Effects of polarization-mode dispersion on cross-phase modulation in dispersion-managed wavelength-division-multiplexed systems, J. Lightwave Technol., Volume 22 (2004), pp. 977-987
[24] Parametric and Raman amplification in birefringent fibers, JOSA B, Volume 9 (1992), p. 1061
[25] Broadband fiber-optical parametric amplifiers, Opt. Lett., Volume 21 (1996), pp. 573-575
[26] Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence, J. Lightwave Technol., Volume 14 (1996), pp. 148-157
[27] Measurement of birefringence correlation length in long, single-mode fibers, Opt. Lett., Volume 26 (2001), pp. 962-964
[28] Phenomenological approach to polarisation dispersion in long single-mode fibres, Electron. Lett., Volume 22 (1986), pp. 1029-1030
[29] Polarization-maintaining fibers and their applications, J. Lightwave Technol., Volume 4 (1986), pp. 1071-1089
[30] Birefringence and polarization mode-dispersion in spun single-mode fibers, Appl. Opt., Volume 20 (1981), pp. 2962-2968
[31] Polarization properties of spun single-mode fibers, J. Lightwave Technol., Volume 24 (2006), pp. 4075-4088
[32] Group velocity, energy, and polarization mode dispersion, JOSA B, Volume 16 (1999), pp. 1863-1867
[33] The velocities of light, Am. J. Phys., Volume 38 (1970), pp. 978-984
[34] Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers, Opt. Express, Volume 16 (2008), pp. 21692-21707
[35] Evidence of Raman induced polarization pulling, Opt. Express, Volume 17 (2009), pp. 947-955
Cited by Sources:
Comments - Policy