Comptes Rendus
Slow light using semiconductor optical amplifiers: Model and noise characteristics
[Lumière lente dans les amplificateurs optiques à semi-conducteurs : Modélisation et caractérisation du bruit additif]
Comptes Rendus. Physique, Volume 10 (2009) no. 10, pp. 991-999.

Nous présentons un modèle amélioré prédisant la réponse RF de l'amplificateur optique à semi-conducteurs (SOA). Ce modèle reste valide quelles que soient les conditions expérimentales : en effet, il prend en compte la saturation dynamique du SOA, caractérisée par une expérience très simple, et ne repose que sur peu de paramètres d'ajustement, qui dépendent du matériau et non du courant d'injection ou de la puissance optique d'entrée. On utilise ce nouveau modèle pour caractériser le bruit additif du SOA, afin d'analyser les effets du ralentissement de la lumière sur les propriétés de la liaison opto-hyperfréquence.

We developed an improved model in order to predict the RF behavior of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and bias current. We used this new model to analyze and model the additive noise of the SOA in order to fully characterize the influence of the slow light effect on the microwave photonics link properties.

Publié le :
DOI : 10.1016/j.crhy.2009.10.005
Keywords: Slow light, Semiconductor optical amplifiers (SOA), Microwave photonics, Noise
Mot clés : Lumière lente, Amplificateur optique à semi-conducteurs (SOA), Opto-hyperfréquence, Bruit
Perrine Berger 1, 2 ; Mehdi Alouini 1, 3 ; Jérôme Bourderionnet 1 ; Fabien Bretenaker 2 ; Daniel Dolfi 1

1 Thales Research & Technology, 1, avenue Augustin-Fresnel, 91767 Palaiseau cedex, France
2 Laboratoire Aimé-Cotton, CNRS – université Paris Sud 11, campus d'Orsay, 91405 Orsay cedex, France
3 Institut de physique de Rennes, UMR CNRS 6251, campus de Beaulieu, 35042 Rennes cedex, France
@article{CRPHYS_2009__10_10_991_0,
     author = {Perrine Berger and Mehdi Alouini and J\'er\^ome Bourderionnet and Fabien Bretenaker and Daniel Dolfi},
     title = {Slow light using semiconductor optical amplifiers: {Model} and noise characteristics},
     journal = {Comptes Rendus. Physique},
     pages = {991--999},
     publisher = {Elsevier},
     volume = {10},
     number = {10},
     year = {2009},
     doi = {10.1016/j.crhy.2009.10.005},
     language = {en},
}
TY  - JOUR
AU  - Perrine Berger
AU  - Mehdi Alouini
AU  - Jérôme Bourderionnet
AU  - Fabien Bretenaker
AU  - Daniel Dolfi
TI  - Slow light using semiconductor optical amplifiers: Model and noise characteristics
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 991
EP  - 999
VL  - 10
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.10.005
LA  - en
ID  - CRPHYS_2009__10_10_991_0
ER  - 
%0 Journal Article
%A Perrine Berger
%A Mehdi Alouini
%A Jérôme Bourderionnet
%A Fabien Bretenaker
%A Daniel Dolfi
%T Slow light using semiconductor optical amplifiers: Model and noise characteristics
%J Comptes Rendus. Physique
%D 2009
%P 991-999
%V 10
%N 10
%I Elsevier
%R 10.1016/j.crhy.2009.10.005
%G en
%F CRPHYS_2009__10_10_991_0
Perrine Berger; Mehdi Alouini; Jérôme Bourderionnet; Fabien Bretenaker; Daniel Dolfi. Slow light using semiconductor optical amplifiers: Model and noise characteristics. Comptes Rendus. Physique, Volume 10 (2009) no. 10, pp. 991-999. doi : 10.1016/j.crhy.2009.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.005/

[1] J. Yao Microwave photonics, J. Lightwave Technol., Volume 27 (2009), pp. 314-335

[2] J. Capmany; B. Ortega; D. Pastor A tutorial on microwave photonic filters, J. Lightwave Technol., Volume 24 (2006), pp. 201-229

[3] D. Dolfi et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays, Appl. Opt., Volume 35 (1996), pp. 5293-5300

[4] P.-C. Ku et al. Slow light in semiconductor quantum wells, Opt. Lett., Volume 29 (2004), pp. 2291-2293

[5] R. Boula-Picard et al. Impact of the gain saturation dynamics in semiconductor optical amplifiers on the characteristics of an analog optical link, J. Lightwave Technol., Volume 23 (2005), pp. 2420-2426

[6] J. Mørk et al. Slow light in a semiconductor waveguide at gigahertz frequencies, Opt. Express, Volume 13 (2005), pp. 8136-8145

[7] S.S. Maicas et al. Controlling microwave signals by means of slow and fast light effects in SOA-EA structures, IEEE Photon. Technol. Lett., Volume 19 (2007), pp. 1589-1591

[8] Y. Chen; J. Mørk Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers, International Topical Meeting on Slow and Fast Light, 2009 OSA Technical Digest, Optical Society of America, 2009

[9] G.P. Agrawal Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers, J. Opt. Soc. Am. B, Volume 5 (1988), pp. 147-159

[10] S.-W. Chang et al. Slow light based on coherent population oscillation in quantum dots at room temperature, IEEE J. Quantum Electron., Volume 43 (2007), pp. 196-205

[11] A. Capua et al. Direct observation of the coherent spectral hole in the noise spectrum of a saturated InAs/InP quantum dash amplifier operating near 1550 nm, Opt. Express, Volume 16 (2008), pp. 2141-2146

[12] J. Kim et al. Static gain saturation model of quantum-dot semiconductor optical amplifiers, IEEE J. Quantum Electron., Volume 44 (2008), pp. 658-666

[13] M.J. Connelly Wideband semiconductor optical amplifier steady-state numerical model, IEEE J. Quantum Electron., Volume 37 (2001), pp. 439-447

[14] H. Su; S.L. Chuang Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers, Appl. Phys. Lett., Volume 88 (2006), p. 061102

[15] L.A. Coldren; S.W. Corzine Diode Lasers and Photonic Integrated Circuits, Wiley & Sons, 1995

[16] E. Rosencher; B. Vinter Optoelectronics, Cambridge, 2002

[17] A. Haug Evidence of the importance of Auger recombination for InGaAsP lasers, Electron. Lett., Volume 20 (1984), pp. 85-86

[18] D.M. Baney; P. Gallion; R.S. Tucker Theory and measurement techniques for the noise figure of optical amplifiers, Opt. Fiber Technol., Volume 6 (2000), pp. 122-154

[19] N.A. Olsson Lightwave systems with optical amplifiers, J. Lightwave Technol., Volume 7 (1989), pp. 1071-1082

[20] G. Baili et al. Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications, Opt. Lett., Volume 32 (2007), pp. 650-652

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Slow and fast light in quantum dot based semiconductor optical amplifiers

Anthony Martinez; J.-G. Provost; Guy Aubin; ...

C. R. Phys (2009)


Challenges and advances of photonic integrated circuits

Hélène Debrégeas-Sillard; Christophe Kazmierski

C. R. Phys (2008)


Wideband delays generated in an all-optical tunable delay line, preserving signal wavelength and bandwidth

Luc Thévenaz; Sanghoon Chin

C. R. Phys (2009)