The objective of this review is to present the salient features of capsule mechanical behaviour under the influence of viscous deforming forces due to a flowing fluid. We focus on artificial capsules that are initially spherical with an internal liquid core and that are enclosed by a very thin hyperelastic membrane. Different constitutive laws, commonly used to describe the rheological behaviour of thin membranes, are presented. The motion and deformation of a single capsule freely suspended in a simple shear flow is presented as a function of membrane constitutive law and of initial pre-stress. The limitations of classical membrane models that neglect bending effects are discussed.
L'objectif de cette revue est de présenter les aspects essentiels du comportement mécanique d'une capsule soumise aux efforts visqueux d'un fluide en écoulement. On se focalise sur les capsules artificielles qui ont une forme initiale sphèrique, un milieu interne liquide et qui sont entourées d'une membrane mince hyperélastique. Différentes lois constitutives usuelles sont présentées pour décrire le comportement mécanique de la membrane. On étudie ensuite le mouvement et la déformation d'une capsule isolée suspendue librement dans un écoulement de cisaillement, en fonction de la loi de paroi et de précontraintes éventuelles. On discute enfin de la limite de validité d'un modèle de membrane qui néglige les effets de résistance à la flexion.
Mot clés : Capsule, Membrane hyperélastique, Écoulement de Stokes, Interaction hydrodynamique, Suspension
Dominique Barthès-Biesel 1
@article{CRPHYS_2009__10_8_764_0, author = {Dominique Barth\`es-Biesel}, title = {Capsule motion in flow: {Deformation} and membrane buckling}, journal = {Comptes Rendus. Physique}, pages = {764--774}, publisher = {Elsevier}, volume = {10}, number = {8}, year = {2009}, doi = {10.1016/j.crhy.2009.09.004}, language = {en}, }
Dominique Barthès-Biesel. Capsule motion in flow: Deformation and membrane buckling. Comptes Rendus. Physique, Volume 10 (2009) no. 8, pp. 764-774. doi : 10.1016/j.crhy.2009.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.09.004/
[1] Cell Encapsulation Technology and Therapeutics, Birkhäuser, 1998
[2] Deformation of single emulsion drops covered with a viscoelastic adsorbed protein layer in simple shear flow, Appl. Phys. Lett., Volume 87 (2005), p. 244104
[3] Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow, J. Fluid Mech., Volume 250 (1993), pp. 609-633
[4] Shear-induced deformation of polyamid microcapsules, Colloid Polym. Sci., Volume 278 (2000), pp. 169-175
[5] Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation, J. Fluid Mech., Volume 460 (2002), pp. 211-222
[6] Strain energy function of red blood cell membranes, Biophys. J., Volume 13 (1973), pp. 245-264
[7] Compression of biocompatible liquid-filled HSA-alginate capsules: Determination of the membrane mechanical properties, Biotechnol. Bioeng., Volume 82 (2003), pp. 207-212
[8] Transport rates through a capsule membrane to attain Donnan equilibrium, J. Colloid Interface Sci., Volume 263 (2003), pp. 202-212
[9] Deformation of a capsule in simple shear flow: Effect of membrane pre-stress, Phys. Fluids, Volume 17 (2005), pp. 0721051-0721058
[10] On the contact problem of an inflated spherical nonlinear membrane, J. Appl. Mech., Volume 40 (1973), pp. 209-214
[11] Compression of spherical cells, Mech. Today, Volume 5 (1980), pp. 161-176
[12] Compression of a capsule: Mechanical laws of membranes with negligible bending stiffness, Phys. Rev. E, Volume 69 (2004), pp. 061601-061608
[13] Identification of a bioartificial microcapsule wall material parameter with an inverse method and the compression test, J. Colloid Interface Sci., Volume 301 (2006), pp. 217-226
[14] Shear induced deformation of microcapsules: Shape oscillations and membrane folding, Colloids Surf. A: Physicochem. Eng. Aspects, Volume 183–185 (2001), pp. 123-132
[15] Deformation of a capsule in a spinning drop apparatus, J. Colloid Interface Sci., Volume 202 (1998), pp. 293-300
[16] Deformation and bursting of non-spherical poly-siloxane microcapsules in a spinning-drop-apparatus, J. Colloid Interface Sci., Volume 282 (2005), pp. 109-119
[17] Mechanical properties of micro- and nanocapsules: Single capsule measurements, Polymer, Volume 48 (2007), pp. 7221-7235
[18] Entrance of a bioartificial capsule in a pore, CMES, Volume 3 (2002), pp. 321-337
[19] Motion of a capsule in a cylindrical tube: Effect of membrane pre-stress, J. Fluid Mech., Volume 589 (2007), pp. 157-181
[20] Geometry and physics of wrinkling, Phys. Rev. Lett., Volume 90 (2003) (074302-1–074302-5)
[21] Buckling of a pre-compressed or pre-stretched membrane, Int. J. Solids Struct., Volume 44 (2007), pp. 8074-8085
[22] The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech., Volume 113 (1981), pp. 251-267
[23] Role of membrane viscosity in the orientation and deformation of a capsule suspended in shear flow, J. Fluid Mech., Volume 160 (1985), pp. 119-135
[24] Negative Poisson ratio in two-dimensional networks under tension, Phys. Rev. E, Volume 48 (1993), pp. 4274-4283
[25] Experimental studies of the deformation and breakup of a synthetic capsule in extensional flow, J. Fluid Mech., Volume 250 (1993), pp. 587-608
[26] Wrinkling of microcapsules in shear flow, J. Phys.: Condens. Matter, Volume 18 (2006), p. L185-L191
[27] Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992
[28] Large deformations and burst of a capsule freely suspended in an elongational flow, J. Fluid Mech., Volume 187 (1988), pp. 179-196
[29] Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow, J. Fluid Mech., Volume 297 (1995), pp. 123-152
[30] Deformation of capsules with incompressible interfaces in simple shear flow, J. Fluid Mech., Volume 283 (1995), pp. 175-200
[31] Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of capsule viscosity, J. Fluid Mech., Volume 361 (1998), pp. 117-143
[32] Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity, Phys. Fluids, Volume 12 (2000), pp. 948-957
[33] Effect of membrane bending stiffness on the deformation of capsules in uniaxial extensional flow, Phys. Fluids, Volume 13 (2001), pp. 1234-1242
[34] Effect of membrane bending stiffness on the deformation of capsules in simple shear flow, J. Fluid Mech., Volume 440 (2001), pp. 269-291
[35] Spherical capsules in three-dimensional unbounded Stokes flow: Effect of the membrane constitutive law and onset of buckling, J. Fluid Mech., Volume 516 (2004), pp. 303-334
[36] Spindles, cusps, and bifurcation for capsules in Stokes flow, Phys. Rev. Lett., Volume 101 (2008) no. 20, p. 208102
[37] Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids, Volume 10 (1998), pp. 1834-1845
[38] Effect of inertia on the hydrodynamic interaction between two liquid capsules in simple shear flow, Int. J. Multiphase Flow, Volume 34 (2008), pp. 375-392
[39] Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane, J. Comput. Phys., Volume 227 (2008) no. 10, pp. 4998-5018
[40] J. Walter, Couplage intégrales de frontière et éléments finis: application aux capsules sphériques et ellipsoïdales en écoulement, Thèse de Doctorat de l'Université de Technologie de Compiègne, 2009
[41] Fluid vesicle in shear flow, Phys. Rev. Lett., Volume 77 (1996), pp. 3685-3688
[42] From two-dimensional model networks to microcapsules, Rheol. Acta, Volume 41 (2002), p. 292
[43] Hydrodynamic interaction between two identical capsules in a simple shear flow, J. Fluid Mech., Volume 573 (2007), pp. 149-169
[44] Pair-wise interaction of capsules in simple shear flow: Three-dimensional effects, Phys. Fluids, Volume 20 (2008) (040801-1–040801-6)
Cited by Sources:
Comments - Policy