Comptes Rendus
Rheological approaches to food systems
[Rhéologie et aliments]
Comptes Rendus. Physique, Volume 10 (2009) no. 8, pp. 740-750.

Les aliments, produits de consommation et cosmétiques font partie d'un large éventail de matériaux colloïdaux ou non. Ce sont souvent des matériaux composites comprenant plusieurs classes de constituants fluides et solides, notamment des gels de biopolymères, des suspensions de particules, des émulsions et des mousses. Les longueurs importantes dans ces matériaux peuvent être n'importe quoi entre celles qui caractérisent la conformation des molécules et les dimensions des écoulements de fabrication. L'échelle de temps peut être inférieure à la milliseconde lors de la combinaison des ingrédients, et plusieurs années quand le produit fini a rejoint son étagère. La recherche rhéologique sur les aliments se concentre à la fois sur l'interaction entre les ingrédients, qui pourraient eux-même présenter une fonction de réponse complexe, et l'influence du procédé de fabrication sur la structure de l'aliment et ses propriétés. Le bref panorama qui suit résume les méthodes rhéologiques appropriées que l'on classe selon l'échelle de longueur les interactions.

Foods, consumer products and cosmetics belong to a wide range of colloidal and non-colloidal materials. Often, they are composite materials comprising several classes of fluid and solid constituents, including biopolymer gels, particulate suspensions, emulsions and foams. Length scales relevant for such materials may be anywhere between those associated with the molecular conformation of the ingredients up to long-scale dimensions of processing flows. The corresponding time scales may be in the sub-millisecond regime during aggregation of the ingredients or up to years during the shelf life of the final product. Rheological research of food material focuses on both the interaction between its ingredients, which might exhibit a complex rheological response function themselves and the influence of processing on the food structure and its properties. This brief overview summarizes suitable food rheology approaches and is grouped by the degree of abstraction of length scales and interactions.

Publié le :
DOI : 10.1016/j.crhy.2009.10.016
Keywords: Rheology, Constitutive equations, Suspensions, Emulsions, Foams, Phenomenological models, Microstructure
Mot clés : Rhéologie, Équations constitutives, Suspensions, Émulsions, Mousses, Modèles phénoménologiques, Microstructure

Peter Fischer 1 ; Michael Pollard 1 ; Philipp Erni 1 ; Irene Marti 1 ; Stefan Padar 1

1 Institute of Food Science & Nutrition, ETH Zurich, CH-8092 Zurich, Switzerland
@article{CRPHYS_2009__10_8_740_0,
     author = {Peter Fischer and Michael Pollard and Philipp Erni and Irene Marti and Stefan Padar},
     title = {Rheological approaches to food systems},
     journal = {Comptes Rendus. Physique},
     pages = {740--750},
     publisher = {Elsevier},
     volume = {10},
     number = {8},
     year = {2009},
     doi = {10.1016/j.crhy.2009.10.016},
     language = {en},
}
TY  - JOUR
AU  - Peter Fischer
AU  - Michael Pollard
AU  - Philipp Erni
AU  - Irene Marti
AU  - Stefan Padar
TI  - Rheological approaches to food systems
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 740
EP  - 750
VL  - 10
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.10.016
LA  - en
ID  - CRPHYS_2009__10_8_740_0
ER  - 
%0 Journal Article
%A Peter Fischer
%A Michael Pollard
%A Philipp Erni
%A Irene Marti
%A Stefan Padar
%T Rheological approaches to food systems
%J Comptes Rendus. Physique
%D 2009
%P 740-750
%V 10
%N 8
%I Elsevier
%R 10.1016/j.crhy.2009.10.016
%G en
%F CRPHYS_2009__10_8_740_0
Peter Fischer; Michael Pollard; Philipp Erni; Irene Marti; Stefan Padar. Rheological approaches to food systems. Comptes Rendus. Physique, Volume 10 (2009) no. 8, pp. 740-750. doi : 10.1016/j.crhy.2009.10.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.10.016/

[1] A. Donald Nat. Mater., 3 (2004), p. 579

[2] R. Mezzenga; P. Schurtenberger; A. Burbidge; M. Michel Nat. Mater., 4 (2005), p. 729

[3] E. Dickinson An Introduction to Food Colloids, Oxford University Press, Oxford, UK, 1992

[4] R.G. Larson The Structure and Rheology of Complex Fluids, Oxford University Press, Oxford, UK, 1999

[5] P. Walstra Physical Chemistry of Foods, Marcel Dekker, New York, 2003

[6] K. Nishinari Food Sci. Tech. Res., 15 (2009) no. 2, pp. 99-106

[7] J. Chen Food Hydrocolloids, 23 (2009) no. 1, pp. 1-25

[8] E. Dickinson Soft Matter, 2 (2006) no. 8, pp. 642-652

[9] D. Genovese; J. Lozano; M. Rao J. Food Sci., 72 (2007) no. 2, p. R11-R20

[10] R. Singh; D. Heldman Introduction to Food Engineering, Academic Press, Amsterdam, 2009

[11] R. Chhabra Bubbles, Drops, and Particles in Non-Newtonian Fluids, Taylor and Francis, Boca Raton, 2007

[12] J. Aguilera Food Technol., 54 (2005) no. 11, pp. 56-65

[13] C. Servais; H. Ranc; I. Roberts J. Texture Stud., 34 (2004), pp. 467-497

[14] P. Burey; B. Bhandari; R. Rutgers; P. Halley; P. Torley Int. J. Food Prop., 12 (2009) no. 1, pp. 176-210

[15] J. Taylor; I. Van Damme; M. Johns J. Food Sci., 74 (2009) no. 2, p. E55-E61

[16] S. Beckett The Science of Chocolate, RSC Publishing, Cambridge, 2008

[17] J. Taylor; I. Van Damme; M. Johns Eur. Food Res. Tech., 226 (2008) no. 6, pp. 1259-1268

[18] P. van Puyvelde; Y.A. Antonov; P. Moldenaers Food Hydrocolloids, 17 (2003) no. 3, pp. 327-332

[19] E. Foegeding; M. Drake J. Dairy Sci., 90 (2007) no. 4, pp. 1611-1624

[20] E. Dickinson Food Hydrocolloids, 17 (2003) no. 1, pp. 25-39

[21] M. Faergemand; B. Murray J. Agric. Food Chem., 46 (1998), pp. 884-890

[22] L. Piazza; J. Gigli; A. Bulbarello J. Food Eng., 84 (2008) no. 3, pp. 420-429

[23] P. Fischer; P. Erni Curr. Opin. Colloid Interface Sci., 12 (2007), pp. 196-205

[24] H. Wildmoser; J. Scheiwiller; E. Windhab LWT – Lebensmittel-Wissenschaft und -Technologie, 37 (2004) no. 8, pp. 817-891

[25] C. Soukoulis; D. Lebesi; C. Tzia Food Chem., 115 (2009) no. 2, pp. 665-671

[26] A. Akalin; C. Karagozlu; G. Ender Milchwissenschaft – Milk Sci. Int., 63 (2008) no. 3, pp. 293-295

[27] S. Marze; A. Saint-Jalmes; D. Langevin Colloids Surf. A – Physicochem. Eng. Aspects, 263 (2005), pp. 121-128

[28] E. Jakubczyk; K. Niranjan J. Food Eng., 77 (2006) no. 1, pp. 79-83

[29] B. Chavez-Montes; L. Choplin; E. Schaer J. Texture Stud., 38 (2007) no. 2, pp. 236-252

[30] E. Dickinson; Y. Yamamoto J. Agric. Food Chem., 44 (1996), pp. 1371-1377

[31] S.N.D. Lal; C.J. O'Conner; L. Eyres Adv. Colloid Interface Sci., 123–126 (2006), pp. 433-437

[32] E. Muliawan; S. Hatzikiriakos Int. Dairy J., 18 (2008) no. 6, pp. 615-623

[33] E. Foegeding Curr. Opin. Colloid Interface Sci., 12 (2007), pp. 242-250

[34] B. Wolf; W. Frith; S. Singleton; M. Tassieri; I. Norton Rheol. Acta, 40 (2001), pp. 238-247

[35] B. Wolf; W. Frith J. Rheol., 47 (2003) no. 5, pp. 1151-1170

[36] B. Walther; P. Walkenström; A.-M. Hermansson; P. Fischer; E.J. Windhab Food Hydrocolloids, 16 (2002), p. 633

[37] P. Erni; C. Cramer; I. Marti; E.J. Windhab; P. Fischer Adv. Colloid Interface Sci., 150 (2009), pp. 16-26

[38] R. Tanner; S. Dai; F. Qi Rheol. Acta, 47 (2008) no. 7, pp. 739-749

[39] Y.-R. Kim; P. Cornillon; O. Campanella; R. Stroshine; S. Lee; J. Shim J. Food Sci., 73 (2008) no. 1, p. E1-E8

[40] T. van Vliet J. Cereal Sci., 48 (2008) no. 1, pp. 1-9

[41] R. Tanner; F. Qi; S. Dai J. Non-Newton. Fluid Mech., 148 (2008) no. 1–3, pp. 33-40

[42] A. Pruska-Kedzior; Z. Kedzior; M. Goracy Eur. Food Res. Tech., 227 (2008) no. 5, pp. 1523-1536

[43] J. Lefebvre J. Cereal Sci., 49 (2009) no. 2, pp. 262-271

[44] E. van der Linden; L. Sagis; P. Venema Curr. Opin. Colloid Interface Sci., 8 (2003) no. 4–5, pp. 349-358

[45] D.J. McClements Food Emulsions: Principles, Practice, and Techniques, CRC Press, Boca Raton, 2005

[46] S. Friberg Food Emulsions, CRC Press, Boca Raton, FL, 2003

[47] P. Walkenström; A.-M. Hermansson Curr. Opin. Colloid Interface Sci., 7 (2002), pp. 413-418

[48] F. Morrison Understanding Rheology, Oxford University Press, Oxford, 2001

[49] J. Steffe Rheological Methods in Food Process Engineering, Freeman Press, East Lansing, 1996

[50] J.N. Israelachvili Intermolecular & Surface Forces, Academic Press, London, 1992

[51] P.C. Hiemenz; R. Rajagopalan Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1997

[52] A.W. Adamson; A.P. Gast Physical Chemistry of Surfaces, Wiley-Interscience, New York, 1997

[53] I.D. Morrison; S. Ross Colloidal Dispersions – Suspensions, Emulsions, and Foams, Wiley-Interscience, New York, 2002

[54] H. Barnes J. Non-Newton. Fluid Mech., 56 (1995) no. 3, pp. 221-251

[55] H. Barnes J. Non-Newton. Fluid Mech., 81 (1999) no. 1–2, pp. 133-178

[56] H. Barnes Appl. Rheol., 17 (2007) no. 4, p. 43110

[57] J. Stokes; J. Telford J. Non-Newton. Fluid Mech., 124 (2004) no. 1–3, pp. 137-146

[58] D. Kalyon J. Rheol., 49 (2005) no. 3, pp. 621-640

[59] T. Mezger The Rheology Handbook, Vincentz Network, Hannover, 2006

[60] C. Lareo; P. Fryer; M. Barigou Food Bioproducts Process., 75 (1997), pp. 73-105

[61] T. Do; J. Hargreaves; B. Wolf; J. Hort; J. Mitchell J. Food Sci., 72 (2007) no. 9, pp. 541-552

[62] I. Marti; O. Höfler; P. Fischer; E. Windhab Rheol. Acta, 44 (2005), p. 502

[63] F.V. Villagran, G.M. McCabe, V.Y.L. Wong, US Patent, 1996, 5490999

[64] R. Buscall J. Chem. Soc. Faraday Trans., 87 (1991), p. 1365

[65] C.J.S. Petrie J. Non-Newton. Fluid Mech., 87 (1999), p. 369

[66] D. Gunes; R. Scirocco; J. Mewis; J. Vermant J. Non-Newton. Fluid Mech., 155 (2008), pp. 39-50

[67] R. Farris Trans. Soc. Rheol., 12 (1968), pp. 281-301

[68] K. Qin; A. Zaman J. Colloid Interface Sci., 266 (2003), pp. 461-467

[69] J. Bullard; A. Pauli; E. Garboczi; N. Martys J. Colloid Interface Sci., 330 (2009), pp. 186-193

[70] E. Morris; A. Cutler; S. Ross-Murphy; D. Rees Carbohydr. Polym., 1 (1981), pp. 5-21

[71] W. Graessley Polymeric Liquids and Networks: Dynamics and Rheology, Garland Publishing Inc., New York, 2008

[72] M. Beer; P. Wood; J. Weisz Carbohydr. Polym., 39 (1981), pp. 377-380

[73] M. Pollard; B. Eder; P. Fischer; E. Windhab Carbohydr. Polym., 79 (2010), p. 70

[74] M. Pollard; R. Kelly; P. Fischer; E. Windhab; B. Eder; R. Amado Food Hydrocolloids, 22 (2008), p. 1596

[75] P. Erni; P. Fischer; V. Herle; M. Haug; E.J. Windhab Chem. Phys. Chem., 9 (2008) no. 13, pp. 1833-1837

[76] E. Dickinson J. Chem. Soc. – Faraday Trans., 94 (1998) no. 12, pp. 1657-1669

[77] R. Miller; V.B. Fainerman; E.V. Aksenenko; M.E. Leser; M. Michel Langmuir, 20 (2004) no. 3, pp. 771-777

[78] E. Dickinson Colloids Surf. B, 15 (1999) no. 2, pp. 161-176

[79] A. Martin; M. Bos; M. Cohen Stuart; T. van Vliet Langmuir, 18 (2002) no. 4, pp. 1238-1243

[80] G. Serrien; G. Geeraerts; L. Ghosh; P. Joos Colloids Surf., 68 (1992) no. 4, pp. 219-233

[81] J.R. Lu; T.J. Su; R.K. Thomas J. Colloid Interface Sci., 213 (1999) no. 2, pp. 426-437

[82] L.G. Cascão Pereira; O. Théodoly; H.W. Blanch; C.J. Radke Langmuir, 19 (2003), pp. 2349-2356

[83] D.A. Edwards; H. Brenner; D.T. Wasan Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Stoneham, MA, 1991

[84] E.M. Freer; K.S. Yim; G.G. Fuller; C.J. Radke J. Phys. Chem. B, 108 (2004) no. 12, pp. 3835-3844

[85] P. Erni; P. Fischer; E. Windhab Langmuir, 21 (2005) no. 23, pp. 10555-10563

[86] P. Erni; P. Fischer; E.J. Windhab Appl. Phys. Lett., 87 (2005) no. 24, p. 244104

[87] H.A. Stone Ann. Rev. Fluid Mech., 26 (1994), pp. 65-102

[88] H.P. Grace Chem. Eng. Commun., 14 (1982), pp. 225-277

[89] A. Williams; J.J.M. Janssen; A. Prins Colloids Surf. A, 125 (1997), pp. 189-200

[90] P. Erni; E.J. Windhab; R. Gunde; M. Graber; B. Pfister; A. Parker; P. Fischer Biomacromolecules, 8 (2007), pp. 3458-3466

[91] G.H. Meeten Rheol. Acta, 39 (2000), pp. 399-408

[92] T.S.K. Ng; G.H. McKinley J. Rheol., 52 (2008), pp. 417-449

[93] H.A. Barnes; Q.D. Nguyen J. Non-Newton. Fluid Mech., 98 (2001), pp. 1-14

[94] M. Schatzmann; G. Bezzola; H.-E. Minor; E. Windhab; P. Fischer Rheol. Acta, 48 (2009), pp. 715-733

Cité par Sources :

Commentaires - Politique