This article reviews recent advances in emission of terahertz radiation from two-dimensional (2D) electron systems in semiconductor nano-heterostructures. 2D plasmon resonance is first presented to demonstrate intense broadband terahertz emission from InGaP/InGaAs/GaAs material systems. The device structure is based on a high-electron mobility transistor and incorporates the author's original interdigitated dual-grating gates. The second topic focuses on graphene, a monolayer carbon-atomic honeycomb lattice crystal, exhibiting unique carrier transport and optical properties owing to the massless and gapless energy spectrum. Coherent stimulated terahertz emission from femtosecond infrared-laser pumped epitaxial graphene is experimentally observed, reflecting the occurrence of negative dynamic conductivity and population inversion.
Cet article passe en revue des progrès récents dans l'émission de rayonnement térahertz par des systèmes électroniques bidimensionnels (2D) dans des dispositifs à nano-hétérostructures de semi-conducteurs.
L'article débute par une description de la résonance plasmonique 2D qui permet une intense émission térahertz à large bande dans les systèmes InGaP/InGaAs/GaAs. Le dispositif est basé sur un transistor à haute mobilité électronique et inclut des grilles à doubles réseaux interdigités inventées par les auteurs. On s'intéresse ensuite au graphène, monocouche de carbone de maille hexagonale, dont les propriétés de bande interdite et masse effective nulles conduisent à des propriétés optiques et de transport électrique très particulières. On a observé expérimentalement une émission térahertz cohérente par du graphène épitaxié stimulé par un laser infrarouge impulsionnel, ce qui indique une conductivité dynamique négative et une inversion de population dans le matériau.
Mots-clés : Émission térahertz, Système électronique bidimensionnel, Plasmons, Graphène, Hétérostructures
Taiichi Otsuji 1; Hiromi Karasawa 1; Takayuki Watanabe 1; Tetsuya Suemitsu 1; Maki Suemitsu 1; Eiichi Sano 2; Wojciech Knap 3; Victor Ryzhii 4
@article{CRPHYS_2010__11_7-8_421_0, author = {Taiichi Otsuji and Hiromi Karasawa and Takayuki Watanabe and Tetsuya Suemitsu and Maki Suemitsu and Eiichi Sano and Wojciech Knap and Victor Ryzhii}, title = {Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures}, journal = {Comptes Rendus. Physique}, pages = {421--432}, publisher = {Elsevier}, volume = {11}, number = {7-8}, year = {2010}, doi = {10.1016/j.crhy.2010.04.002}, language = {en}, }
TY - JOUR AU - Taiichi Otsuji AU - Hiromi Karasawa AU - Takayuki Watanabe AU - Tetsuya Suemitsu AU - Maki Suemitsu AU - Eiichi Sano AU - Wojciech Knap AU - Victor Ryzhii TI - Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures JO - Comptes Rendus. Physique PY - 2010 SP - 421 EP - 432 VL - 11 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2010.04.002 LA - en ID - CRPHYS_2010__11_7-8_421_0 ER -
%0 Journal Article %A Taiichi Otsuji %A Hiromi Karasawa %A Takayuki Watanabe %A Tetsuya Suemitsu %A Maki Suemitsu %A Eiichi Sano %A Wojciech Knap %A Victor Ryzhii %T Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures %J Comptes Rendus. Physique %D 2010 %P 421-432 %V 11 %N 7-8 %I Elsevier %R 10.1016/j.crhy.2010.04.002 %G en %F CRPHYS_2010__11_7-8_421_0
Taiichi Otsuji; Hiromi Karasawa; Takayuki Watanabe; Tetsuya Suemitsu; Maki Suemitsu; Eiichi Sano; Wojciech Knap; Victor Ryzhii. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures. Comptes Rendus. Physique, Terahertz electronic and optoelectronic components and systems, Volume 11 (2010) no. 7-8, pp. 421-432. doi : 10.1016/j.crhy.2010.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.04.002/
[1] Cutting-edge terahertz technology, Nature Photon., Volume 1 (2007), pp. 97-105
[2] Thermal excitation of two-dimensional plasma oscillations, Phys. Rev. Lett., Volume 49 (1982), pp. 1667-1671
[3] Far infrared emission from plasma oscillations of Si inversion layers, Solid State Communications, Volume 35 (1980), pp. 875-877
[4] Far-infrared emission from two-dimensional plasmons in AlGaAs/GaAs heterointerfaces, Appl. Phys. Lett., Volume 48 (1986), pp. 776-778
[5] Cyclotron and plasmon emission from two-dimensional electrons in GaAs, Surf. Sci., Volume 113 (1982), pp. 118-123
[6] Plasmon excitation and self-coupling in a bi-periodically modulated two-dimensional electron gas, J. Appl. Phys., Volume 71 (1992), pp. 6049-6061
[7] Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions, Appl. Phys. Lett., Volume 67 (1995), pp. 2326-2328
[8] Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current, Phys. Rev. Lett., Volume 71 (1993), pp. 2465-2468
[9] Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors, Appl. Phys. Lett., Volume 84 (2004), pp. 2331-2333
[10] Voltage tunable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor, J. Appl. Phys., Volume 97 (2005), p. 064307
[11] Magnetic field effect on the terahertz emission from nanometer InGaAs/AlInAs high electron mobility transistors, J. Appl. Phys., Volume 97 (2005), p. 114313
[12] Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems, Phys. Rev. B, Volume 58 (1998), pp. 1517-1532
[13] Plasmon-based terahertz emission from quantum well structures, Appl. Phys. Lett., Volume 75 (1999), pp. 1685-1687
[14] Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths, Appl. Phys. Lett., Volume 78 (2001), pp. 2620-2622
[15] Terahertz quantum cascade lasers—first demonstration and novel concepts, Semicond. Sci. Technol., Volume 20 (2005), p. S222-S227
[16] AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources, J. Appl. Phys., Volume 107 (2010), p. 024504 | DOI
[17] Plasma instability and terahertz generation in HEMTs due to electron transit-time effect, IEICE Trans. Electron., Volume E89-C (2006), pp. 1012-1019
[18] Mechanism of self-excitation of terahertz plasma oscillations in periodically double-gated electron channels, J. Phys.: Condens. Matter, Volume 20 (2008), p. 384207
[19] Ballistic and quasiballistic transport in semiconductor structures, Sov. Phys. Semicond., Volume 18 (1984), pp. 481-491
[20] The rise of graphene, Nat. Mat., Volume 6 (2007), pp. 183-191
[21] Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005), pp. 197-200
[22] Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, Volume 438 (2005), pp. 201-204
[23] Negative dynamic conductivity of graphene with optical pumping, J. Appl. Phys., Volume 101 (2007), p. 083114
[24] Population inversion of photoexcited electrons and holes in graphene and its negative terahertz conductivity, Phys. Stat. Sol. (c), Volume 5 (2008), pp. 261-264
[25] Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures, J. Appl. Phys., Volume 106 (2009), p. 084507
[26] Terahertz laser with optically pumped graphene layers and Fabri–Perot resonator, Appl. Phys. Express, Volume 2 (2009), p. 092301
[27] Anomaly of optical phonon in monolayer graphene, J. Phys. Soc. Jpn., Volume 75 (2006), p. 124701
[28] Zone-boundary phonon in graphene and nanotube, J. Phys. Soc. Jpn., Volume 77 (2008), p. 044703
[29] Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene, Phys. Rev. B, Volume 79 (2009), p. 115447
[30] Measurement of ultrafast carrier dynamics in epitaxial graphene, Appl. Phys. Lett., Volume 92 (2008), p. 042116
[31] Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy, Phys. Rev. Lett., Volume 101 (2008), p. 157402
[32] Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene, Nano Lett., Volume 8 (2008), pp. 4248-4251
[33] Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene, Appl. Phys. Lett., Volume 94 (2009), p. 172102
[34] Ultrafast relaxation dynamics of hot optical phonons in graphene, 2009 | arXiv
[35] Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite, Phys. Rev. Lett., Volume 95 (2005), p. 187403
[36] Ultrafast carrier dynamics in graphite, Phys. Rev. Lett., Volume 102 (2009), p. 086809
[37] A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure, Opt. Express, Volume 14 (2006), pp. 4815-4825
[38] A grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems, Appl. Phys. Lett., Volume 89 (2006), p. 263502
[39] Emission of terahertz radiation from InGaP/InGaAs/GaAs grating-bicoupled plasmon-resonant emitter, Solid State Electron., Volume 51 (2007), pp. 1319-1327
[40] Room temperature terahertz emission from grating coupled two-dimensional plasmons, Appl. Phys. Lett., Volume 92 (2008), p. 201108
[41] Emission of terahertz radiation from dual-grating-gates plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems, J. Phys.: Condens. Matter, Volume 20 (2008), p. 384206
[42] Application of plasmonic microchip emitters to broadband terahertz spectroscopic measurement, J. Opt. Soc. Am. B, Volume 26 (2009), p. A52-A57
[43] Anticrossing of plasmon resonances and giant enhancement of interlayer terahertz electric field in an asymmetric bilayer of two-dimensional electron strips, J. Appl. Phys., Volume 99 (2006), p. 124303
[44] Mechanism of self-excitation of terahertz plasma oscillations in periodically double-gated electron channels, J. Phys.: Condens. Matter, Volume 20 (2008), p. 384207
[45] Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron mobility transistors, Appl. Phys. Lett., Volume 85 (2004), pp. 2119-2121
[46] H. Karasawa, T. Komori, T. Watanabe, M. Suemitsu, V. Ryzhii, T. Otsuji, Observation of carrier relaxation and recombination dynamics in optically pumped epitaxial graphene heterostructures using terahertz emission spectroscopy, Dig. CLEO-Europe, CF8.3, Munich, 2009.
[47] Graphene formation on a 3C-SiC(111) thin film grown on Si(110) substrate, e-J. Surface Sci. Nanotech., Volume 7 (2009), pp. 311-313
[48] Raman-scattering spectroscopy of epitaxial graphene formed on SiC film on Si substrate, e-J. Surface Sci. Nanotech., Volume 7 (2009), pp. 107-109
[49] Epitaxial growth processes of graphene on silicon substrates, Jpn. J. Appl. Phys., Volume 49 (2010), p. 01AH03
[50] Measuring the degree of stacking order in graphite by Raman spectroscopy, Carbon, Volume 46 (2008), pp. 272-275
[51] Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study, Appl. Phys. Lett., Volume 92 (2008), p. 011914
[52] Why multilayer graphene on 4H-SiC(000) behaves like a single sheet of graphene, Phys. Rev. Lett., Volume 100 (2008), p. 125504
[53] Sub-picosecond reflective electro-optic sampling of electron–hole vertical transport in surface-space-charge field, Appl. Phys. Lett., Volume 56 (1990), pp. 524-526
[54] Theoretical evaluation of channel structure in graphene field-effect transistors, Jpn. J. Appl. Phys., Volume 48 (2009), p. 041202
Cited by Sources:
Comments - Policy