Comptes Rendus
Imaging by terahertz photon counting
[Comptage de photons pour l'imagerie térahertz]
Comptes Rendus. Physique, Volume 11 (2010) no. 7-8, pp. 444-456.

Les techniques de comptage de photons se révèlent indispensables pour détecter des rayonnements visibles ou infrarouges très peu intenses. Dans le domaine des ondes térahertz, ces techniques n'étaient pas employées jusqu'à présent, car elles sont rendues très difficiles à mettre en œuvre à cause de l'énergie très faible de chaque photon térahertz, qui est au moins 100 fois plus faible que celle des photons infrarouges ou visibles. Dans ce papier, nous donnons une revue des récentes techniques de comptage de photons térahertz, réalisées à l'aide de détecteurs de type boite quantique à semi-conducteur, qui nous ont permis de construire un microscope térahertz à balayage. La dynamique de détection est augmentée de 6 ordres de grandeur grâce à l'effet Hall quantique dans les détecteurs. Nous avons utilisé notre microscope térahertz pour étudier des composants semi-conducteurs à effet Hall quantique. Ainsi, nous avons pu imager le très faible rayonnement cyclotron émis par un gaz d'électrons hors équilibre. Grâce à la sensibilité inégalée de notre instrument, nous avons mis en évidence des phénomènes de dynamique des électrons pas encore observés. En plus des études des composants à semi-conducteurs reportées ici, notre dispositif pourra être employé dans différents domaines scientifiques comme la dynamique moléculaire, la micro-thermographie, ou l'activité cellulaire en biologie.

Photon counting method is indispensable in visible/near-infrared optical measurements for detecting extremely weak radiation. The method, however, has been inaccessible in terahertz region, where the photon energies are more than 100 times smaller and catching individual photons is difficult. Here we review photon counting measurements of terahertz waves, by incorporating a semiconductor quantum-dot terahertz-photon detector into a scanning terahertz microscope. By using a quantum Hall effect detector as well, measurements cover the intensity dynamic range more than six orders of magnitude. Applying the measurement system to the study of semiconductor quantum Hall effect devices, we image extremely weak cyclotron radiation emitted by nonequilibrium electrons. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled. Besides semiconductor electric devices studied here, the experimental method will find application in diverse areas of molecular dynamics, microthermography, and cell activities.

Publié le :
DOI : 10.1016/j.crhy.2010.06.009
Keywords: Terahertz, Photon detection, Quantum dot, Quantum Hall effect
Mot clés : Térahertz, Détection de photons, Point quantique, Effet Hall quantique

Kenji Ikushima 1, 2 ; Susumu Komiyama 3

1 Department of Applied Physics, Tokyo University of A & T, Naka-cho, Koganei, Tokyo 184-8588, Japan
2 PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
3 Department of Basic Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
@article{CRPHYS_2010__11_7-8_444_0,
     author = {Kenji Ikushima and Susumu Komiyama},
     title = {Imaging by terahertz photon counting},
     journal = {Comptes Rendus. Physique},
     pages = {444--456},
     publisher = {Elsevier},
     volume = {11},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crhy.2010.06.009},
     language = {en},
}
TY  - JOUR
AU  - Kenji Ikushima
AU  - Susumu Komiyama
TI  - Imaging by terahertz photon counting
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 444
EP  - 456
VL  - 11
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.06.009
LA  - en
ID  - CRPHYS_2010__11_7-8_444_0
ER  - 
%0 Journal Article
%A Kenji Ikushima
%A Susumu Komiyama
%T Imaging by terahertz photon counting
%J Comptes Rendus. Physique
%D 2010
%P 444-456
%V 11
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2010.06.009
%G en
%F CRPHYS_2010__11_7-8_444_0
Kenji Ikushima; Susumu Komiyama. Imaging by terahertz photon counting. Comptes Rendus. Physique, Volume 11 (2010) no. 7-8, pp. 444-456. doi : 10.1016/j.crhy.2010.06.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.009/

[1] P.R. Smith; D.H. Auston; M.C. Nuss Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron., Volume 24 (1988), pp. 255-260

[2] B.B. Hu; M.C. Nuss Imaging with terahertz waves, Opt. Lett., Volume 20 (1995), pp. 1716-1718

[3] R. Köhler; A. Tredicucci; F. Beltram; H.E. Beere; E.H. Linfield; A.G. Davies; D.A. Ritchie; R.C. Iotti; F. Rossi Terahertz semiconductor-heterostructure laser, Nature, Volume 417 (2002), pp. 156-159

[4] D.M. Mittleman; R.H. Jacobsen; M.C. Nuss T-ray imaging, IEEE J. Select. Topics Quantum Electron, Volume 2 (1996), pp. 679-692

[5] S. Wang; B. Ferguson; D. Abbott; X.-C. Zhang T-ray imaging and tomography, J. Biol. Phys., Volume 29 (2003), pp. 247-256

[6] K. Kawase; Y. Ogawa; Y. Watanabe; H. Inoue Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Optics Express, Volume 11 (2003), pp. 2549-2554

[7] A. Lipatov; O. Okunev; K. Smirnov; G. Chulkova; A. Korneev; P. Kouminov; G. Gol'tsman; J. Zhang; W. Slysz; A. Verevkin; R. Sobolewski An ultrafast NbN hot-electron single-photon detector for electronic applications, Supercond. Sci. Technol., Volume 15 (2002), pp. 1689-1692

[8] J. Wei; D. Olaya; B.S. Karasik; S.V. Pereverzev; A.V. Sergeev; M.E. Gershenson Ultrasensitive hot-electron nanobolometers for terahertz astrophysics, Nature Nanotechnology, Volume 3 (2008), pp. 496-500

[9] S. Komiyama; O. Astafiev; V. Antonov; T. Kutsuwa; H. Hirai A single-photon detector in the far-infrared range, Nature, Volume 403 (2000), pp. 405-407

[10] O. Astafiev; S. Komiyama; T. Kutsuwa; V. Antonov Single-photon detector in the microwave range, Appl. Phys. Lett., Volume 80 (2002), pp. 4250-4252

[11] V. Antonov; O. Astafiev; T. Kutsuwa; H. Hirai; S. Komiyama Single FIR-photon detection using a quantum dot, Physica E, Volume 6 (2000), pp. 367-370

[12] H. Hashiba; V. Antonov; L. Kulik; A. Tzalenchuk; P. Kleinshmid; S. Giblin; S. Komiyama Isolated quantum dot in application to terahertz photon counting, Phys. Rev. B, Volume 73 (2006), p. 081310(R)

[13] J.C. Chen; Z. An; T. Ueda; S. Komiyama; K. Hirakawa; V. Antonov Metastable excited states of a closed quantum dot probed by an aluminum single-electron transistor, Phys. Rev. B, Volume 74 (2006), p. 045321

[14] Z. An; T. Ueda; S. Komiyama; K. Hirakawa Metastable excited states of a closed quantum dot with high sensitivity to infrared photons, Phys. Rev. B, Volume 75 (2007), p. 085417

[15] T. Ueda; Z. An; K. Hirakawa; S. Komiyama Charge sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer, J. Appl. Phys., Volume 103 (2008), p. 093109

[16] K. Ikushima; Y. Yoshimura; T. Hasegawa; S. Komiyama; T. Ueda; K. Hirakawa Photon-counting microscopy of terahertz radiation, Appl. Phys. Lett., Volume 88 (2006), p. 152110

[17] R.J. Schoelkopf; P. Wahlgreen; A.A. Kozhevnikov; P. Delsing; D.E. Prober The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer, Science, Volume 280 (1998), pp. 1238-1241

[18] S. Pelling; R. Davis; L. Kulik; A. Tzalenchuk; S. Kubatkin; T. Ueda; S. Komiyama; V.N. Antonov Point contact readout for a quantum dot terahertz sensor, Appl. Phys. Lett., Volume 93 (2008), p. 073501

[19] O. Astafiev; S. Komiyama Single-photon detection with quantum dots in the far-infrared/submillimeter-wave range (J.P. Bird, ed.), Electron Transport in Quantum Dots, Kluwer Academic Publishers, 2003, pp. 363-396

[20] K. Ikushima; H. Sakuma; S. Komiyama A highly sensitive scanning far-infrared microscope with quantum Hall detectors, Rev. Sci. Instrum., Volume 74 (2003), pp. 4209-4211

[21] Y. Kawano; Y. Hisanaga; S. Komiyama Cyclotron emission from quantized Hall devices: Injection of nonequilibrium electrons from contacts, Phys. Rev. B, Volume 59 (1999), pp. 12537-12546

[22] B.J. van Wees et al. Anomalous integer quantum Hall effect in the ballistic regime with quantum point contacts, Phys. Rev. Lett., Volume 62 (1989), pp. 1181-1184

[23] S. Komiyama; H. Hirai; S. Sasa; S. Hiyamizu Violation of the integral quantum Hall effect: Influence of backscattering and the role of voltage contacts, Phys. Rev. B, Volume 40 (1989), pp. 12566-12569

[24] R. Haug; A.H. MacDonald; P. Streda; K. von Klitzing Quantized multichannel magnetotransport through a barrier in two dimensions, Phys. Rev. Lett., Volume 61 (1989), pp. 2797-2800

[25] K. Ikushima; S. Komiyama; T. Ueda; K. Hirakawa THz-photon generation due to electrons injected via quantum-Hall edge channels, Physica E, Volume 40 (2008), pp. 1026-1029

[26] S. Komiyama et al. Inter-edge-state scattering and nonlinear effects in a two-dimensional electron gas at high magnetic fields, Phys. Rev. B, Volume 45 (1992), pp. 11085-11107

[27] K. Ikushima; H. Sakuma; S. Komiyama; K. Hirakawa Imaging of cyclotron emission from edge channels in quantum Hall conductors, Phys. Rev. Lett., Volume 93 (2004), p. 146804

[28] M.E. Cage; R.F. Dziuba; B.F. Field; E.R. Williams; S.M. Girvin; A.C. Gossard; D.C. Tsui; R.J. Wagner Dissipation and dynamic nonlinear behavior in the quantum Hall regime, Phys. Rev. Lett., Volume 51 (1983), pp. 1374-1377

[29] A. Gurevich; R.G. Mints Nonlinear waves under conditions of the quantum Hall effect, JETP Lett., Volume 39 (1984), pp. 381-384

[30] S. Komiyama; T. Takamasu; S. Hiyamizu; S. Sasa Breakdown of the quantum Hall effect due to electron heating, Solid State Commun., Volume 54 (1985), pp. 479-484

[31] S. Komiyama; Y. Kawaguchi; T. Osada; Y. Shiraki Evidence of nonlocal breakdown of the integer quantum Hall effect, Phys. Rev. Lett., Volume 77 (1996), pp. 558-561

[32] A. Gurevich; R.G. Mints Self-heating in normal metals and superconductors, Rev. Mod. Phys., Volume 59 (1987), pp. 941-999

[33] M.E. Cage; G.M. Reedtz; D.Y. Yu; C.T. van Degrift Quantized dissipative states at breakdown of the quantum Hall effect, Semicond. Sci. Technol., Volume 5 (1990), pp. 351-354

[34] W. Zawadzki; C. Chaubet; D. Dur; W. Knap; A. Raymond Cyclotron emission study of electron masses in GaAs-GaAlAs heterostructures, Semicond. Sci. Technol., Volume 9 (1994), pp. 320-328

[35] B. Knoll; K. Keilmann Near-field probing of vibration absorption for chemical microscopy, Nature, Volume 399 (1999), pp. 134-137

[36] Chen Hou-Tong; R. Kersting; G.C. Cho Terahertz imaging with nanometer resolution, Appl. Phys. Lett., Volume 83 (2003), pp. 3009-3011

[37] Y. De Wilde; F. Formanek; R. Carminati; B. Gralak; P. Lemoine; K. Joulain; J. Mulet; Y. Chen; J. Greffet Thermal radiation tunneling microscopy, Nature, Volume 444 (2006), p. 740

Cité par Sources :

Commentaires - Politique