This work ties some crystal plasticity continuum mechanics computations with the diffraction theory. This allows one to predict coherent X-ray diffraction (CXD) patterns in reciprocal space in a polycrystalline specimen. When the sample deforms elastically, the full displacement field can be used to simulate CXD patterns, but it is no longer possible, as soon as plasticity develops within the considered grains. An approximate elastic displacement field, based on a first order Taylor expansion of the elastic deformation field near the center of the grain, is used to extend the predictions in the plastic regime. It is shown that using such a field leads to more realistic CXD patterns and therefore this approach could be useful to interpret coherent diffraction experiments in the future.
La théorie continue de la plasticité cristalline est utilisée pour prédire les figures de diffraction aux rayons X dans l'espace réciproque d'un polycristal métallique. Lorsque l'échantillon se déforme de manière purement élastique, le champ de déplacement calculé par éléments finis est utilisé pour simuler les figures de diffraction. Ce n'est plus possible dès que la plasticité se développe dans les grains étudiés. C'est la distorsion élastique qui intervient alors pour le calcul de diffraction. Un champ de déplacement approché, basé sur un développement de Taylor au premier ordre autour du centre d'un grain, est utilisé pour la prévision des figures de diffraction dans le régime plastique. On montre que l'usage de ce champ approché à la place du déplacement total conduit à des prévisions significativement différentes et plus réalistes des figures de diffraction. Cette approche peut donc être utile pour l'interprétation des expériences de diffraction cohérente.
Mots-clés : Diffraction cohérente, Éasticité anisotrope, Plasticité cristalline, Modélisation par éléments finis
H. Proudhon 1; N. Vaxelaire 2; S. Labat 2; S. Forest 1; O. Thomas 2
@article{CRPHYS_2010__11_3-4_293_0, author = {H. Proudhon and N. Vaxelaire and S. Labat and S. Forest and O. Thomas}, title = {Finite element simulations of coherent diffraction in elastoplastic polycrystalline aggregates}, journal = {Comptes Rendus. Physique}, pages = {293--303}, publisher = {Elsevier}, volume = {11}, number = {3-4}, year = {2010}, doi = {10.1016/j.crhy.2010.07.009}, language = {en}, }
TY - JOUR AU - H. Proudhon AU - N. Vaxelaire AU - S. Labat AU - S. Forest AU - O. Thomas TI - Finite element simulations of coherent diffraction in elastoplastic polycrystalline aggregates JO - Comptes Rendus. Physique PY - 2010 SP - 293 EP - 303 VL - 11 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2010.07.009 LA - en ID - CRPHYS_2010__11_3-4_293_0 ER -
%0 Journal Article %A H. Proudhon %A N. Vaxelaire %A S. Labat %A S. Forest %A O. Thomas %T Finite element simulations of coherent diffraction in elastoplastic polycrystalline aggregates %J Comptes Rendus. Physique %D 2010 %P 293-303 %V 11 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2010.07.009 %G en %F CRPHYS_2010__11_3-4_293_0
H. Proudhon; N. Vaxelaire; S. Labat; S. Forest; O. Thomas. Finite element simulations of coherent diffraction in elastoplastic polycrystalline aggregates. Comptes Rendus. Physique, Computational metallurgy and scale transitions, Volume 11 (2010) no. 3-4, pp. 293-303. doi : 10.1016/j.crhy.2010.07.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.009/
[1] Some elements of microstructural mechanics, Computational Materials Science, Volume 27 (2003) no. 3, pp. 351-374
[2] Elastic anisotropy and yield surface estimates of polycrystals, International Journal of Solids and Structures, Volume 46 (2009), pp. 3018-3026
[3] Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials, International Journal of Plasticity, Volume 23 (2007) no. 9, pp. 1512-1539
[4] Ensemble averaging stress-strain fields in polycrystalline aggregates with a constrained surface microstructure—Part 1: Anisotropic elastic behaviour, Philosophical Magazine, Volume 87 (2007) no. 8–9, pp. 1401-1424
[5] Ensemble averaging stress-strain fields in polycrystalline aggregates with a constrained surface microstructure—Part 2: Crystal plasticity, Philosophical Magazine, Volume 87 (2007) no. 8–9, pp. 1425-1446
[6] 3D simulations of microstructure and comparison with experimental microstructure coming from OIM analysis, International Journal of Plasticity, Volume 24 (2008), pp. 1516-1532
[7] New opportunities for 3d materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging, Materials Science and Engineering A, Volume 524 (2009) no. 1–2, pp. 69-76 (Special topic section: Probing strains and dislocation gradients with diffraction)
[8] Finite element calculations of the lattice rotation field of a tensile loaded nickel base alloy multicrystal and comparison to topographical X-ray diffraction measurements, Metallurgical and Materials Transactions A, Volume 33 (2002), pp. 2825-2833
[9] In situ diffraction strain analysis of elastically deformed polycrystalline thin films, and micromechanical interpretation, Journal of Applied Crystallography, Volume 42 (2009), pp. 1073-1084
[10] Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent X-ray diffraction, New Journal of Physics, Volume 12 (2010) no. 3, p. 035018
[11] Simulation of stress-strain heterogeneities in copper thin films: Texture and substrate effects, Computational Materials Science, Volume 39 (2007), pp. 137-141
[12] Finite element simulations of the cyclic elastoplastic behaviour of copper thin films, Modelling and Simulation in Materials Science and Engineering, Volume 15 (2007) no. 1, p. S217-S238
[13] Comparison of mechanical behaviour of thin film simulated by discrete dislocation dynamics and continuum crystal plasticity, Computational Materials Science, Volume 45 (2009), pp. 793-799
[14] Sources of decoherence in beamline optics, Physica B: Condensed Matter, Volume 336 (2003) no. 1–2, pp. 56-62
[15] Using direct illumination CCDs as high-resolution area detectors for X-ray scattering, Nuclear Instrument & Methods in Physics Research A, Volume 451 (2000) no. 3, pp. 569-609
[16] Une généralisation de la théorie de la plasticité de W.T. Koiter, Int. J. Solids Structures, Volume 1 (1965), pp. 273-295
[17] Plasticité classique et viscoplasticité, CISM Courses and Lectures, vol. 97, Springer-Verlag, Udine/Berlin, 1971
[18] Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques, Int. J. Solids Structures, Volume 9 (1973), pp. 725-740
[19] A theory of finite elastoviscoplasticity of single crystals, Int. J. of Engng. Science, Volume 14 (1976), pp. 165-176
[20] Large Plastic Deformation of Crystalline Aggregates, CISM Courses and Lectures, vol. 376, Springer-Verlag, Udine/Berlin, 1997
[21] M. Fivel, S. Forest, Plasticité cristalline et transition d'échelle : cas du monocristal, Techniques de l'Ingénieur, M4016, 2004, 23 pp.
[22] Homogenized and relocalized mechanical fields, Journal of Strain Analysis for Engineering Design, Volume 42 (2007), pp. 215-226
[23] Elastic constants of silver and gold, Phys. Rev., Volume 111 (1958) no. 3, pp. 707-712
Cited by Sources:
Comments - Policy