[Microstructures et rhéologie du manteau terrestre supérieur déduites d'une approche multi-échelle]
The strongly anisotropic rheology of olivine polycrystals, associated to their microstructure, constitutes a key feature affecting the dynamics of the Earth's upper mantle. High pressure deformation experiments carried out on olivine single crystals under synchrotron radiation, together with estimations of lattice friction based on first-principle calculations, show a transition from easy [100] to easy [001] slips as pressure and temperature (thus depth) increases. We input these data at the slip system level into the second-order extension of the self-consistent scheme to assess microstructure evolution along a typical flow pattern beneath an oceanic spreading center.
La forte anisotropie rhéologique des polycristaux d'olivine, associée à leur microstructure, est un aspect majeur affectant la dynamique du manteau terrestre supérieur. Des expériences de déformation sous haute pression et en rayonnement synchrotron de monocristaux d'olivine, complétées par des calculs ab initio de friction de réseau, montrent une transition du système « mou » depuis [100] vers [001] quand la pression et la température (et donc la profondeur in situ) augmentent. Nous avons introduit ces données à l'échelle du système de glissement dans l'extension du second-ordre du schéma auto-cohérent afin d'appréhender les évolutions de microstructure le long d'un écoulement typique sous une dorsale océanique.
Mots-clés : Olivine, Dislocations, Haute pression, Viscoplasticité, Polycristal, Homogénéisation, Manteau terrestre
Olivier Castelnau 1 ; Patrick Cordier 2 ; R.A. Lebensohn 3 ; Sébastien Merkel 2 ; Paul Raterron 2
@article{CRPHYS_2010__11_3-4_304_0, author = {Olivier Castelnau and Patrick Cordier and R.A. Lebensohn and S\'ebastien Merkel and Paul Raterron}, title = {Microstructures and rheology of the {Earth's} upper mantle inferred from a multiscale approach}, journal = {Comptes Rendus. Physique}, pages = {304--315}, publisher = {Elsevier}, volume = {11}, number = {3-4}, year = {2010}, doi = {10.1016/j.crhy.2010.07.011}, language = {en}, }
TY - JOUR AU - Olivier Castelnau AU - Patrick Cordier AU - R.A. Lebensohn AU - Sébastien Merkel AU - Paul Raterron TI - Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach JO - Comptes Rendus. Physique PY - 2010 SP - 304 EP - 315 VL - 11 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2010.07.011 LA - en ID - CRPHYS_2010__11_3-4_304_0 ER -
%0 Journal Article %A Olivier Castelnau %A Patrick Cordier %A R.A. Lebensohn %A Sébastien Merkel %A Paul Raterron %T Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach %J Comptes Rendus. Physique %D 2010 %P 304-315 %V 11 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2010.07.011 %G en %F CRPHYS_2010__11_3-4_304_0
Olivier Castelnau; Patrick Cordier; R.A. Lebensohn; Sébastien Merkel; Paul Raterron. Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach. Comptes Rendus. Physique, Computational metallurgy and scale transitions, Volume 11 (2010) no. 3-4, pp. 304-315. doi : 10.1016/j.crhy.2010.07.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.011/
[1] Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models, J. Geophys. Res., Volume 111 (2006), p. B08309 | DOI
[2] Use of mineral physics, with geodynamic modeling and seismology, to investigate flow in the Earth's mantle, Rep. Prog. Phys., Volume 70 (2007), pp. 659-689
[3] In situ rheological measurements at extreme pressure and temperature using synchrotron X-ray diffraction and radiography, J. Synchr. Rad., Volume 16 (2009), pp. 748-756
[4] Pressure sensitivity of olivine slip systems: first-principle calculations of generalized stacking faults, Phys. Chem. Miner., Volume 32 (2005), pp. 646-654
[5] Application of the Peierls–Nabarro model to dislocations in forsterite, Eur. J. Mineral., Volume 19 (2007), pp. 631-639
[6] Modeling the plastic deformation of olivine by dislocation dynamics simulations, Am. Mineral., Volume 92 (2007), pp. 1346-1357
[7] Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg2SiO4 forsterite, Philos. Mag., Volume 88 (2008), pp. 2477-2485
[8] Modelling dynamic recrystallization of olivine aggregates deformed in simple shear, J. Geophys. Res., Volume 104 (1999), pp. 25513-25527
[9] Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: implications for the upper mantle seismic anisotropy, J. Geophys. Res., Volume 105 (2000), pp. 7893-7908
[10] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I – Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757
[11] Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, J. Mech. Phys. Solids, Volume 54 (2006), pp. 1029-1063
[12] Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating field fluctuations, Philos. Mag., Volume 87 (2007) no. 28, pp. 4287-4322
[13] Micromechanical modelling of the viscoplastic behavior of olivine, J. Geophys. Res., Volume 113 (2008), p. B09202 | DOI
[14] Earth mantle rheology inferred from homogenization theories (O. Cazacu, ed.), Multi-Scale Modeling of Heterogeneous Materials, Wiley, 2008 (ISBN: 9781848210479)
[15] Shear deformation experiments of forsterite at 11 GPa–1400 °C in the multianvil apparatus, Eur. J. Mineral., Volume 16 (2004), pp. 877-889
[16] Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle, Nature, Volume 433 (2005), pp. 731-733
[17] Pressure-induced slip-system transition in forsterite: single-crystal rheological properties at mantle pressure and temperature, Am. Mineral., Volume 92 (2007), pp. 1436-1445
[18] Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine, Nat. Geosci., Volume 2 (2009), pp. 73-77
[19] Experimental deformation of olivine single crystals at mantle pressures and temperatures, Phys. Earth Planet. Interiors, Volume 172 (2009), pp. 74-83
[20] Petrofabrics and seismic properties of garnet peridotite from UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab, Tectonophysics, Volume 421 (2006), pp. 111-127
[21] Reply to the comment of S. Karato on “Petrofabrics and seismic properties of garnet peridotites from the USP Sulu Terrane (China)” by Xu et al. [Tectonophysics 421 (2006) 111–127], Tectonophysics, Volume 429 (2007), pp. 291-296
[22] Comments on “Petrofabrics and seismic properties of garnet peridotites from the USP Sulu Terrane (China)” by Xu et al. [Tectonophysics 421 (2006) 111–127], Tectonophysics, Volume 429 (2007), pp. 287-289
[23] High-temperature creep of olivine single crystals; 1. Mechanical results for buffered samples, J. Geophys. Res., Volume 96 (1991), pp. 2441-2463
[24] Deformation of single crystal sample using D-DIA apparatus coupled with synchrotron X-rays: In situ stress and strain measurements at high pressure and temperature, J. Phys. Chem. Solids, Volume 71 ( August 2010 ) no. 8, pp. 1053-1058 | DOI
[25] Predicting the structure of screw dislocations in nanoporous materials, Nat. Mater., Volume 3 (2004), pp. 715-720
[26] Atomic scale modelling of the cores of dislocations in complex materials, part 1: methodology, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3227-3234
[27] Atomic scale modelling of the cores of dislocations in complex materials, part 2: applications, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3235-3242
[28] Simulation of screw dislocations in wadsleyite, Phys. Chem. Miner., Volume 37 (2010) no. 5, pp. 301-310 | DOI
[29] On the size of a dislocation, Proc. R. Soc. Lond., Volume 52 (1940), pp. 34-37
[30] Dislocations in a simple cubic lattice, Proc. R. Soc. Lond., Volume 59 (1947), pp. 256-272
[31] Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., Volume 18 (1968), pp. 773-786
[32] Dislocations and stacking faults, Rep. Prog. Phys., Volume 33 (1970), pp. 307-411
[33] A. Metsue, Modélisation des structures de cœurs des dislocations dans les minéraux du manteau terrestre à l'aide du modèle de Peierls–Nabarro, Ph.D. thesis, Université Lille 1, Lille, France, 2010.
[34] Plastic deformation of wadsleyite: IV. Dislocation core modelling based on the Peierls–Nabarro–Galerkin model, Acta Mater., Volume 58 (2010), pp. 1467-1478
[35] Anisotropic convection with implications for the upper mantle, J. Geophys. Res., Volume 98 (1993), pp. 17757-17772
[36] Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Met. Trans. A, Volume 8 (1977) no. 9, pp. 1465-1469
[37] Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C. R. Acad. Sci. Paris, Ser. IIB, Volume 328 (2000), pp. 11-17
[38] Variational self-consistent estimates for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape, J. Mech. Phys. Solids, Volume 49 (2001), pp. 313-340
[39] Full-field vs. homogenization methods to predict microstructure–property relations for polycrystalline materials (S. Ghosh; D. Dimiduk, eds.), Computational Methods for Microstructure–Property Relationships, 2010
[40] Insuffisance de l'extension classique du modèle autocohérent au comportement non linéaire, C. R. Acad. Sci. Paris, Ser. IIB, Volume 320 (1995), pp. 115-122
[41] A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94
[42] A computational method based on augmented Lagrangians and Fast Fourier Transforms for composites with high contrast, Comput. Modelling Eng. Sci., Volume 1 (2000), pp. 79-88
[43] N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform, Acta Mater., Volume 49 (2001), pp. 2723-2737
[44] Modelling the mechanical response of polycrystals deforming by climb and glide, Philos. Mag., Volume 90 (2010) no. 5, pp. 567-583
[45] Self-consistent scheme and graded disorder in polycrystal elasticity, J. Phys. F: Metal Phys., Volume 8 (1978), pp. 2261-2267
[46] Variational and related methods for the overall properties of composites, Adv. Appl. Mech., Volume 21 (1981), pp. 2-78
[47] Study of the antiplane deformation of linear 2-D polycrystals with different microstructure, Int. J. Solids Struct., Volume 42 (2005), pp. 5441-5459
[48] Elastic anisotropy and yield surface estimates, Int. J. Solids Struct., Volume 46 (2009), pp. 3018-3026
[49] The coherent potential approximation is a realizable effective medium scheme, Commun. Math. Phys., Volume 99 (1985), pp. 483-503
[50] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 376-396
[51] Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302
[52] Mechanical field fluctuations in polycrystals estimated by homogenization techniques, Proc. R. Soc. Lond. A, Volume 460 (2004) no. 2052, pp. 3589-3612
[53] A critical evaluation for various nonlinear extensions of the self-consistent model, Sèvres, France, 1995 (A. Pineau; A. Zaoui, eds.), Kluwer Academic Publishers, Dordrecht (1996), pp. 67-74
[54] A theory for plastic deformation and textural evolution of olivine polycrystals, J. Geophys. Res. B, Volume 5 (1991), pp. 8325-8335
[55] Emergent anisotropy and flow alignment in viscous rock, Pure Appl. Geophys., Volume 161 (2004), pp. 2451-2463
[56] Prediction of anisotropy from flow models: A comparison of three methods, Geochem. Geophys. Geosyst., Volume 9 (2008) no. 7, p. Q07014 | DOI
[57] An Introduction to Fluid Dynamics, Cambridge Univ. Press, New York, 1967
[58] Seismic anisotropy in the upper mantle 2. Predictions for current plate boundary flow models, Geochem. Geophys. Geosyst., Volume 3 (2002) no. 9, p. 8602
[59] Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow, Geophys. Res. Lett., Volume 36 (2009), p. L12304 | DOI
[60] Water-induced fabric transitions in olivine, Science, Volume 293 (2001), pp. 1460-1463
- Pressure-dependent large-scale seismic anisotropy induced by non-Newtonian mantle flow, Geophysical Journal International, Volume 238 (2024) no. 1, p. 400 | DOI:10.1093/gji/ggae165
- Background, Mathematic Preliminaries and Notations, Continuum Micromechanics (2023), p. 1 | DOI:10.1007/978-3-031-23313-5_1
- From an atomistic study of olivine under pressure to the understanding of the macroscopic energy release in earthquakes, Geosystems and Geoenvironment, Volume 2 (2023) no. 1, p. 100108 | DOI:10.1016/j.geogeo.2022.100108
- A new finite element approach to model microscale strain localization within olivine aggregates, Solid Earth, Volume 12 (2021) no. 10, p. 2369 | DOI:10.5194/se-12-2369-2021
- Intragranular plasticity vs. grain boundary sliding (GBS) in forsterite: Microstructural evidence at high pressures (3.5–5.0 GPa), American Mineralogist, Volume 104 (2019) no. 2, p. 220 | DOI:10.2138/am-2019-6629
- Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review, Geosciences Journal, Volume 21 (2017) no. 6, p. 985 | DOI:10.1007/s12303-017-0045-1
- Textures in deforming forsterite aggregates up to 8 GPa and 1673 K, Physics and Chemistry of Minerals, Volume 43 (2016) no. 6, p. 409 | DOI:10.1007/s00269-016-0805-x
- Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle, Geochemistry, Geophysics, Geosystems, Volume 16 (2015) no. 10, p. 3436 | DOI:10.1002/2015gc005964
- Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy, Geophysical Journal International, Volume 203 (2015) no. 1, p. 334 | DOI:10.1093/gji/ggv304
- References, Structural Geology (2015), p. 621 | DOI:10.1016/b978-0-12-407820-8.16001-1
- Constitutive Equations, Rheological Behavior, and Viscosity of Rocks, Treatise on Geophysics (2015), p. 441 | DOI:10.1016/b978-0-444-53802-4.00042-7
- Multiscale modeling of ice deformation behavior, Journal of Structural Geology, Volume 61 (2014), p. 78 | DOI:10.1016/j.jsg.2013.05.002
- Structural geology meets micromechanics: A self-consistent model for the multiscale deformation and fabric development in Earth's ductile lithosphere, Journal of Structural Geology, Volume 68 (2014), p. 247 | DOI:10.1016/j.jsg.2014.05.020
- Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography, Physics and Chemistry of Minerals, Volume 41 (2014) no. 7, p. 537 | DOI:10.1007/s00269-014-0665-1
- Multiscale modeling of upper mantle plasticity: From single-crystal rheology to multiphase aggregate deformation, Physics of the Earth and Planetary Interiors, Volume 228 (2014), p. 232 | DOI:10.1016/j.pepi.2013.11.012
- Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: Evidence for temporal changes of pressure-driven upper mantle flow, Tectonics, Volume 33 (2014) no. 7, p. 1304 | DOI:10.1002/2014tc003612
- Experimental characterization of the intragranular strain field in columnar ice during transient creep, Acta Materialia, Volume 60 (2012) no. 8, p. 3655 | DOI:10.1016/j.actamat.2012.03.025
- Deformation of olivine under mantle conditions: An in situ high‐pressure, high‐temperature study using monochromatic synchrotron radiation, Journal of Geophysical Research: Solid Earth, Volume 117 (2012) no. B1 | DOI:10.1029/2011jb008498
- Activities of olivine slip systems in the upper mantle, Physics of the Earth and Planetary Interiors, Volume 200-201 (2012), p. 105 | DOI:10.1016/j.pepi.2012.04.006
- Measurements and full-field predictions of deformation heterogeneities in ice, Earth and Planetary Science Letters, Volume 305 (2011) no. 1-2, p. 153 | DOI:10.1016/j.epsl.2011.02.050
Cité par 20 documents. Sources : Crossref
Commentaires - Politique