[Universalité du problème à petit nombre de corps dans un piège harmonique]
Les systèmes à petit nombre de corps avec des interactions à courte portée résonnantes présentent des propriétés universelles indépendantes des détails de leur structure et de leurs potentiels d'interaction aux petites distances. Dans des systèmes à trois corps, ces propriétés incluent l'existence d'un spectre géométrique d'états d'Efimov à trois corps et une invariance d'échelle discrète. Des propriétés universelles similaires apparaissent dans des systèmes à quatre corps et peut-être aussi dans des systèmes à davantage de corps. Nous construisons une théorie effective pour des systèmes à petit nombre de corps dans un piège harmonique et nous étudions les modifications de la physique universelle des systèmes à trois et quatre corps dues au potentiel de piégeage. En particulier, nous nous concentrons sur les systèmes où le phénomène d'Efimov peut apparaître, et nous examinons la dépendance du spectre à quatre corps en les paramètres ajustables expérimentalement.
Few-body systems with resonant short-range interactions display universal properties that do not depend on the details of their structure or their interactions at short distances. In the three-body system, these properties include the existence of a geometric spectrum of three-body Efimov states and a discrete scaling symmetry. Similar universal properties appear in 4-body and possibly higher-body systems as well. We set up an effective theory for few-body systems in a harmonic trap and study the modification of universal physics for 3- and 4-particle systems in external confinement. In particular, we focus on systems where the Efimov effect can occur and investigate the dependence of the 4-body spectrum on the experimental tuning parameters.
Mots-clés : Universalité, Théorie effective, Confinement extérieur
Simon Tölle 1 ; Hans-Werner Hammer 1 ; Bernard Ch. Metsch 1
@article{CRPHYS_2011__12_1_59_0, author = {Simon T\"olle and Hans-Werner Hammer and Bernard Ch. Metsch}, title = {Universal few-body physics in a harmonic trap}, journal = {Comptes Rendus. Physique}, pages = {59--70}, publisher = {Elsevier}, volume = {12}, number = {1}, year = {2011}, doi = {10.1016/j.crhy.2010.11.011}, language = {en}, }
Simon Tölle; Hans-Werner Hammer; Bernard Ch. Metsch. Universal few-body physics in a harmonic trap. Comptes Rendus. Physique, Few body problem, Volume 12 (2011) no. 1, pp. 59-70. doi : 10.1016/j.crhy.2010.11.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.11.011/
[1] Phys. Rep., 428 (2006), p. 259
[2] Ann. Rev. Nucl. Part. Sci., 60 (2010), p. 207
[3] Phys. Lett., 33B (1970), p. 563
[4] Sov. J. Nucl. Phys., 29 (1979), p. 546
[5] Nucl. Phys. A, 82 (1999), p. 463
[6] Nature, 440 (2006), p. 315
[7] Phys. Rev. Lett., 101 (2008), p. 203202
[8] Phys. Rev. Lett., 102 (2009), p. 165302
[9] Phys. Rev. Lett., 103 (2009), p. 043201
[10] Phys. Rev. Lett., 103 (2009), p. 163202
[11] Nat. Phys., 5 (2009), p. 586
[12] Nat. Phys., 5 (2009), p. 227
[13] Phys. Rev. Lett., 105 (2010), p. 103201
[14] Phys. Rev. Lett., 105 (2010), p. 023201
[15] arXiv
|[16] Eur. Phys. J. A, 32 (2007), p. 113
[17] Nat. Phys., 5 (2009), p. 417
[18] arXiv
|[19] Phys. Rev. Lett., 102 (2009), p. 140401
[20] Science, 326 (2009), p. 1683
[21] J. Phys. B: At. Mol. Opt. Phys., 43 (2010), p. 101002
[22] Found. Phys., 28 (1998), p. 549
[23] Phys. Rev. Lett., 89 (2002), p. 250401
[24] arXiv
|[25] Phys. Rev. Lett., 97 (2006), p. 150401
[26] Phys. Rev. A, 76 (2007), p. 021603
[27] Phys. Rev. Lett., 99 (2007), p. 090402
[28] Phys. Rev. Lett., 99 (2007), p. 233201
[29] Phys. Rev. A, 76 (2007), p. 063613
[30] Phys. Rev. A, 76 (2007), p. 033611
[31] Phys. Rev. Lett., 98 (2007), p. 103202
[32] Phys. Rev. A, 77 (2008), p. 043619
[33] Phys. Rev. Lett., 100 (2008), p. 230401
[34] Ann. Phys., 325 (2010), p. 1644
[35] arXiv
|[36] Phys. Rev. A, 82 (2010), p. 023619
[37] Phys. Lett. B, 653 (2007), p. 358
[38] EPJ Web Conf., 3 (2010), p. 02004
[39] Tablas de Paréntesis de Transformación, Universidad Nacional Autonoma de Mexiko, 1960
[40] et al. Quantum Theory of Angular Momentum, World Scientific Publishing, 1988
[41] P.S. Julienne, private communication.
[42] Phys. Rev. A, 81 (2010), p. 013605
[43] Phys. Rev. Lett., 105 (2010), p. 023201
[44] Phys. Rev. Lett., 103 (2009), p. 073202
[45] Phys. Rev. Lett., 103 (2009), p. 073203
[46] Phys. Rev. A, 79 (2009), p. 053633
[47] Europhys. Lett., 92 (2010), p. 13003 (and references therein)
- Accurate calculation of low energy scattering phase shifts of charged particles in a harmonic oscillator trap, Physics Letters B, Volume 861 (2025), p. 139230 | DOI:10.1016/j.physletb.2024.139230
- Nuclear effective field theory: Status and perspectives, Reviews of Modern Physics, Volume 92 (2020) no. 2 | DOI:10.1103/revmodphys.92.025004
- Harmonically trapped four-boson system, Physical Review A, Volume 97 (2018) no. 3 | DOI:10.1103/physreva.97.033621
- Pion-less effective field theory for atomic nuclei and lattice nuclei, Physical Review C, Volume 98 (2018) no. 5 | DOI:10.1103/physrevc.98.054301
- Effective field theory in the harmonic oscillator basis, Physical Review C, Volume 93 (2016) no. 4 | DOI:10.1103/physrevc.93.044332
- Chiral potential renormalized in harmonic-oscillator space, Physical Review C, Volume 94 (2016) no. 6 | DOI:10.1103/physrevc.94.064004
- Absence of a four-body Efimov effect in the2+2fermionic problem, Physical Review A, Volume 92 (2015) no. 5 | DOI:10.1103/physreva.92.053624
- Mapping the two-component atomic Fermi gas to the nuclear shell-model, The European Physical Journal D, Volume 68 (2014) no. 8 | DOI:10.1140/epjd/e2014-40687-4
- Effective Field Theory for Few Particles in a Trap, Few-Body Systems, Volume 54 (2013) no. 5-6, p. 635 | DOI:10.1007/s00601-012-0473-4
- Convergence properties of the effective theory for trapped bosons, Journal of Physics G: Nuclear and Particle Physics, Volume 40 (2013) no. 5, p. 055004 | DOI:10.1088/0954-3899/40/5/055004
- Effective interactions and operators in the no-core shell model, Progress in Particle and Nuclear Physics, Volume 69 (2013), p. 182 | DOI:10.1016/j.ppnp.2012.10.001
- Universal two-body spectra of ultracold harmonically trapped atoms in two and three dimensions, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 20, p. 205302 | DOI:10.1088/1751-8113/45/20/205302
- Symmetries of three harmonically trapped particles in one dimension, Physical Review A, Volume 86 (2012) no. 5 | DOI:10.1103/physreva.86.052122
- Two and three nucleons in a trap, and the continuum limit, Physical Review C, Volume 85 (2012) no. 3 | DOI:10.1103/physrevc.85.034003
- Few-body physics with ultracold atomic and molecular systems in traps, Reports on Progress in Physics, Volume 75 (2012) no. 4, p. 046401 | DOI:10.1088/0034-4885/75/4/046401
- Three particles in a finite volume: The breakdown of spherical symmetry, The European Physical Journal A, Volume 48 (2012) no. 7 | DOI:10.1140/epja/i2012-12093-6
- Efimov physics from a renormalization group perspective, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 369 (2011) no. 1946, p. 2679 | DOI:10.1098/rsta.2011.0001
- Stable heteronuclear few-atom bound states in mixed dimensions, Physical Review A, Volume 84 (2011) no. 5 | DOI:10.1103/physreva.84.052727
Cité par 18 documents. Sources : Crossref
Commentaires - Politique