[Coupler des atomes ultrafroids avec des oscillateurs mécaniques]
Dans cet article, nous discutons et comparons différentes méthodes pour réaliser une interface entre des atomes ultrafroids et des oscillateurs micro- ou nanomécaniques. Nous analysons dʼabord le couplage mécanique direct dʼun atome isolé à un oscillateur mécanique, et montrons que la grande différence de masse entre les deux systèmes impose une limite à la constante de couplage réalisable dans ce cas. Nous discutons ensuite plusieurs stratégies prometteuses en vue dʼaugmenter ce couplage : un renforcement collectif par lʼutilisation dʼun grand nombre dʼatomes dans un réseau optique, lʼutilisation de cavités optiques de grande finesse, et un couplage aux états atomiques internes. Nous discutons dans cet article à la fois les propositions théoriques et les premières mises en oeuvre expérimentales.
In this article we discuss and compare different ways to engineer an interface between ultracold atoms and micro- and nanomechanical oscillators. We start by analyzing a direct mechanical coupling of a single atom or ion to a mechanical oscillator and show that the very different masses of the two systems place a limit on the achievable coupling constant in this scheme. We then discuss several promising strategies for enhancing the coupling: collective enhancement by using a large number of atoms in an optical lattice in free space, coupling schemes based on high-finesse optical cavities, and coupling to atomic internal states. Throughout the manuscript we discuss both theoretical proposals and first experimental implementations.
Accepté le :
Publié le :
Mot clés : Atomes ultrafroids, Oscillateurs micro- ou nanomécaniques, Systèmes hybrides quantiques, Cavité optomécanique, Condensat de Bose–Einstein, Ions ultrafroids
D. Hunger 1, 2 ; S. Camerer 1, 2 ; M. Korppi 1, 2, 3 ; A. Jöckel 1, 2, 3 ; T.W. Hänsch 1, 2 ; P. Treutlein 1, 2, 3
@article{CRPHYS_2011__12_9-10_871_0, author = {D. Hunger and S. Camerer and M. Korppi and A. J\"ockel and T.W. H\"ansch and P. Treutlein}, title = {Coupling ultracold atoms to mechanical oscillators}, journal = {Comptes Rendus. Physique}, pages = {871--887}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.04.015}, language = {en}, }
TY - JOUR AU - D. Hunger AU - S. Camerer AU - M. Korppi AU - A. Jöckel AU - T.W. Hänsch AU - P. Treutlein TI - Coupling ultracold atoms to mechanical oscillators JO - Comptes Rendus. Physique PY - 2011 SP - 871 EP - 887 VL - 12 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2011.04.015 LA - en ID - CRPHYS_2011__12_9-10_871_0 ER -
D. Hunger; S. Camerer; M. Korppi; A. Jöckel; T.W. Hänsch; P. Treutlein. Coupling ultracold atoms to mechanical oscillators. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 871-887. doi : 10.1016/j.crhy.2011.04.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.04.015/
[1] A megahertz nanomechanical resonator with a room temperature quality factor over a million, Appl. Phys. Lett., Volume 92 (2008), p. 013112
[2] High quality mechanical and optical properties of commercial silicon nitride membranes, Appl. Phys. Lett., Volume 92 (2008), p. 103125
[3] Cavity optomechanics with stoichiometric SiN films, Phys. Rev. Lett., Volume 103 (2009), p. 207204
[4] Putting mechanics into quantum mechanics, Phys. Today, Volume 58 (2005), p. 36
[5] Cavity optomechanics: Back-action at the mesoscale, Science, Volume 321 (2008), p. 1172
[6] Optomechanics, Physics, Volume 2 (2009), p. 40
[7] Optomechanics of deformable optical cavities, Nature Photon., Volume 3 (2009), p. 201
[8] Circuit cavity electromechanics in the strong-coupling regime, Nature, Volume 471 (2011), pp. 204-208
[9] Radiation-pressure cooling and optomechanical instability of a micro-mirror, Nature, Volume 444 (2006), p. 71
[10] Observation of a kilogram-scale oscillator near its quantum ground state, New J. Phys., Volume 11 (2009), p. 073032
[11] Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2009), p. 72
[12] Back-action-evading measurements of nanomechanical motion, Nat. Phys., Volume 6 (2009), p. 213
[13] Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys., Volume 5 (2009), p. 509
[14] Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nat. Phys., Volume 5 (2009), p. 485
[15] Nanomechanical motion measured with an imprecision below that at the standard quantum limit, Nature Nanotech., Volume 4 (2009), p. 820
[16] Cavity cooling of a microlever, Nature, Volume 432 (2004), p. 1002
[17] Dynamical backaction of microwave fields on a nanomechanical resonator, Phys. Rev. Lett., Volume 101 (2008), p. 197203
[18] Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010), p. 697
[19] Sideband cooling micromechanical motion to the quantum ground state, 2011 (preprint) | arXiv
[20] Nanoelectromechanical systems, Rev. Sci. Instrum., Volume 76 (2005), p. 061101
[21] Quantum-mechanical noise in an interferometer, Phys. Rev. D, Volume 23 (1981), p. 1693
[22] Nanoscale magnetic resonance imaging, PNAS, Volume 106 (2009), pp. 1313-1317
[23] Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D, Volume 34 (1986), p. 470
[24] Mathematical Physics 2000, International Conference on Mathematical Physics, Imperial College Press, London, 2000
[25] A quantum spin transducer based on nanoelectromechanical resonator arrays, Nat. Phys., Volume 6 (2010), pp. 602-608
[26] Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature, Volume 460 (2009), p. 724
[27] Quantum-noise reduction using a cavity with a movable mirror, Phys. Rev. A, Volume 49 (1994), p. 1337
[28] Cavity-assisted squeezing of a mechanical oscillator, Phys. Rev. A, Volume 79 (2009), p. 063819
[29] Cavity opto-mechanics using an optically levitated nanosphere, PNAS, Volume 107 (2010)
[30] Entangling movable mirrors in a double-cavity system, Europhys. Lett., Volume 72 (2005), p. 747
[31] Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett., Volume 98 (2007), p. 030405
[32] Ponderomotive control of quantum macroscopic coherence, Phys. Rev. A, Volume 55 (1997), p. 3042
[33] Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, Volume 452 (2008), pp. 72-75
[34] Dispersive optomechanics: a membrane inside a cavity, New J. Phys., Volume 10 (2008), p. 095008
[35] Scheme to probe the decoherence of a macroscopic object, Phys. Rev. A, Volume 59 (1999), p. 3204
[36] Towards quantum superpositions of a mechanical resonator, Phys. Rev. Lett., Volume 91 (2003), p. 130401
[37] Toward quantum superposition of living organisms, New J. Phys., Volume 12 (2010), pp. 1-16
[38] Optically levitating dielectrics in the quantum regime: Theory and protocols, 2010 (preprint) | arXiv
[39] Single-photon opto-mechanics in the strong coupling regime, New J. Phys., Volume 12 (2010), p. 083030
[40] Entanglement and decoherence of a micromechanical resonator via coupling to a cooper-pair box, Phys. Rev. Lett., Volume 88 (2002), p. 148301
[41] Nanomechanical analog of a laser: Amplification of mechanical oscillations by stimulated Zeeman transitions, Phys. Rev. Lett., Volume 91 (2003), p. 138302
[42] Superconducting qubit storage and entanglement with nanomechanical resonators, Phys. Rev. Lett., Volume 93 (2004)
[43] Single spin detection by magnetic resonance force microscopy, Nature, Volume 430 (2004), p. 329
[44] Entanglement from a nanomechanical resonator weakly coupled to a single cooper-pair box, Phys. Rev. B, Volume 72 (2005), p. 195411
[45] Strong magnetic coupling between an electronic spin qubit and a mechanical resonator, Phys. Rev. B, Volume 79 (2009), p. 041302(R)
[46] Nanomechanical measurements of a superconducting qubit, Nature, Volume 459 (2009), p. 960
[47] Cold atoms and quantum control, Nature, Volume 416 (2002), p. 206
[48] Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas, Phys. Rev. A, Volume 66 (2002), p. 053616
[49] Coherence in microchip traps, Phys. Rev. Lett., Volume 92 (2004), p. 203005
[50] Long-lived qubit memory using atomic ions, Phys. Rev. Lett., Volume 95 (2005), p. 060502
[51] Spin self-rephasing and very long coherence times in a trapped atomic ensemble, Phys. Rev. Lett., Volume 105 (2010), p. 020401
[52] Ultracold quantum gases in optical lattices, Nat. Phys., Volume 1 (2005), p. 23
[53] Radiofrequency-dressed-state potentials for neutral atoms, Nat. Phys., Volume 2 (2006), p. 710
[54] Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip, Nat. Phys., Volume 5 (2009), p. 592
[55] Cavity nonlinear optics at low photon numbers from collective atomic motion, Phys. Rev. Lett., Volume 99 (2007), p. 213601
[56] Cavity optomechanics with a Bose–Einstein condensate, Science, Volume 322 (2008), p. 235
[57] Observation of quantum-measurement backaction with an ultracold atomic gas, Nat. Phys., Volume 4 (2008), p. 561
[58] Tunable cavity optomechanics with ultracold atoms, Phys. Rev. Lett., Volume 105 (2010), p. 133602
[59] Spin optodynamics analog of cavity optomechanics, Phys. Rev. A, Volume 82 (2010), p. 041804
[60] Optomechanics of ultracold atomic gases, Physica Scripta, Volume 82 (2010), p. 038111
[61] Nonlinear atom interferometer surpasses classical precision limit, Nature, Volume 464 (2010), p. 1165
[62] Atom-chip-based generation of entanglement for quantum metrology, Nature, Volume 464 (2010), pp. 1170-1173
[63] Experimental issues in coherent quantum-state manipulation of trapped atomic ions, J. Res. Natl. Inst. Stand. Technol., Volume 103 (1998), p. 259
[64] Ion trap transducers for quantum electromechanical oscillators, Phys. Rev. A, Volume 72 (2005), p. 041405(R)
[65] Coupling nanomechanical cantilevers to dipolar molecules, Phys. Rev. Lett., Volume 101 (2008), p. 263603
[66] Optomechanical control of atoms and molecules, Laser Physics, Volume 20 (2010), p. 57
[67] Resonant coupling of a Bose–Einstein condensate to a micromechanical oscillator, Phys. Rev. Lett., Volume 104 (2010), p. 143002
[68] Coupled ion–nanomechanical systems, Phys. Rev. Lett., Volume 93 (2004), p. 266403
[69] Nanoscale atomic waveguides with suspended carbon nanotubes, Appl. Phys. B, Volume 81 (2005), p. 1075
[70] Optical lattices with micromechanical mirrors, Phys. Rev. A, Volume 82 (2010), p. 021803(R)
[71] Coupled dynamics of atoms and radiation-pressure-driven interferometers, Phys. Rev. A, Volume 73 (2006), p. 033417
[72] Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting, Phys. Rev. A, Volume 80 (2009), p. 043607
[73] Strong coupling of a mechanical oscillator and a single atom, Phys. Rev. Lett., Volume 103 (2009), p. 063005
[74] Single-atom cavity QED and opto-micromechanics, Phys. Rev. A, Volume 81 (2010), p. 023816
[75] Hamiltonian chaos in a coupled BEC-optomechanical-cavity system, Phys. Rev. A, Volume 81 (2010), p. 013802
[76] Cold-atom-induced control of an optomechanical device, Phys. Rev. Lett., Volume 104 (2010), p. 243602
[77] Entanglement detection in hybrid optomechanical systems, Phys. Rev. A, Volume 83 (2011), p. 052324
[78] Emergence of atom-light-mirror entanglement inside an optical cavity, Phys. Rev. A, Volume 77 (2008), p. 050307
[79] Cavity optomechanical coupling assisted by an atomic gas, Phys. Rev. A, Volume 78 (2008), p. 013824
[80] Multi-stability of electromagnetically induced transparency in atom-assisted optomechanical cavities, 2009 (preprint) | arXiv
[81] Bose–Einstein condensate coupled to a nanomechanical resonator on an atom chip, Phys. Rev. Lett., Volume 99 (2007), p. 140403
[82] Atomic probe Wigner tomography of a nanomechanical system, Phys. Rev. A, Volume 81 (2010), p. 041804(R)
[83] Quantum entanglement of nanocantilevers, Phys. Rev. A, Volume 82 (2010), p. 043846
[84] Ultracold mechanical resonators coupled to atoms in an optical lattice, Phys. Rev. A, Volume 80 (2009), p. 032317
[85] Magnetic resonance in an atomic vapor excited by a mechanical resonator, Phys. Rev. Lett., Volume 97 (2006), p. 227602
[86] Establishing Einstein–Podolsky–Rosen channels between nanomechanics and atomic ensembles, Phys. Rev. Lett., Volume 102 (2009), p. 020501
[87] Effect of the Casimir–Polder force on the collective oscillations of a trapped Bose–Einstein condensate, Phys. Rev. A, Volume 70 (2004), p. 053619
[88] Nonlinear dynamics of a Bose–Einstein condensate in a magnetic waveguide, Phys. Rev. Lett., Volume 91 (2003), p. 040402
[89] Optical cooling of a micromirror of wavelength size, Appl. Phys. Lett., Volume 90 (2007), p. 104101
[90] Microchip traps and Bose–Einstein condensation, Appl. Phys. B, Volume 74 (2002), p. 469
[91] Cavity-based single atom preparation and high-fidelity hyperfine state readout, Phys. Rev. Lett., Volume 104 (2010), p. 203602
[92] Coaxial-resonator-driven rf (Paul) trap for strong confinement, Phys. Rev. A, Volume 51 (1995), p. 3112
[93] Measurement of the Casimir–Polder force through center-of-mass oscillations of a Bose–Einstein condensate, Phys. Rev. A, Volume 72 (2005), p. 033610
[94] High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon, Phys. Rev. Lett., Volume 85 (2000), p. 5308
[95] Electronic g factor of hydrogenlike oxygen 16O7+, Phys. Rev. Lett., Volume 92 (2004), p. 093002
[96] A long-lived memory qubit on a low-decoherence quantum bus, 2007 (preprint) | arXiv
[97] Entangled mechanical oscillators, Nature, Volume 459 (2009), p. 683
[98] Neutral atoms prepared in Fock states of a one-dimensional harmonic potential, Phys. Rev. A, Volume 59 (1999), p. R8
[99] A Bose–Einstein condensate in an optical lattice, J. Phys. B: At. Mol. Opt. Phys., Volume 35 (2002), pp. 3095-3110
[100] Collisional deexcitation in a quasi-two-dimensional degenerate bosonic gas, Phys. Rev. A, Volume 73 (2006), p. 020702(R)
[101] State preparation and dynamics of ultracold atoms in higher lattice orbitals, Phys. Rev. Lett., Volume 99 (2007), p. 200405
[102] Microwave control of atomic motion in optical lattices, Phys. Rev. Lett., Volume 103 (2009), p. 233001
[103] Long phase coherence time and number squeezing of two Bose–Einstein condensates on an atom chip, Phys. Rev. Lett., Volume 98 (2007), p. 030407
[104] Matter-wave interferometry in a double well on an atom chip, Nat. Phys., Volume 1 (2005), p. 57
[105] Optics and interferometry with atoms and molecules, Rev. Mod. Phys., Volume 81 (2009), p. 1052
[106] Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip, Nature, Volume 450 (2007), p. 272
[107] Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys., Volume 6 (2010), pp. 772-776
[108] Generation of nonclassical motional states of a trapped atom, Phys. Rev. Lett., Volume 76 (1996), p. 1796
[109] Towards fault-tolerant quantum computing with trapped ions, Nat. Phys., Volume 4 (2008), p. 463
[110] Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett., Volume 102 (2009), p. 040501
[111] Coupled quantized mechanical oscillators, Nature, Volume 471 (2011)
[112] Trapped-ion antennae for the transmission of quantum information, Nature, Volume 471 (2011)
[113] The influence of retardation on the London–van der Waals forces, Phys. Rev., Volume 73 (1948), p. 360
[114] Measurement of the temperature dependence of the Casimir–Polder force, Phys. Rev. Lett., Volume 98 (2007), p. 063201
[115] Fiber Fabry–Perot cavity with high finesse, New J. Phys., Volume 12 (2010), p. 065038
[116] Collective excitations of a trapped Bose-condensed gas, Phys. Rev. Lett., Volume 77 (1996), p. 2360
[117] A variational sum-rule approach to collective excitations of a trapped Bose–Einstein condensate, J. Phys. Soc. Jpn., Volume 68 (1999), p. 1477
[118] Trapping cold atoms near carbon nanotubes: Thermal spin flips and Casimir–Polder potential, Phys. Rev. A, Volume 75 (2007), p. 062905
[119] Carbon nanotubes as ultrahigh quality factor mechanical resonators, Nano Lett., Volume 9 (2009), p. 2547
[120] Trapping cold atoms using surface-grown carbon nanotubes, Phys. Rev. A, Volume 79 (2009), p. 043403
[121] Cavity cooling of a nanomechanical resonator by light scattering, New J. Phys., Volume 10 (2008), p. 095006
[122] Fluctuating nanomechanical system in a high finesse optical microcavity, Opt. Express, Volume 17 (2009), pp. 12813-12820
[123] Collapse and revivals of wave packets in optical lattices, Phys. Rev. Lett., Volume 81 (1998), p. 3615
[124] Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density, Phys. Rev. Lett., Volume 84 (2000), p. 439
[125] Trapped atoms in cavity QED: coupling quantized light and matter, J. Phys. B: At. Mol. Opt. Phys., Volume 38 (2005), p. 551
[126] Synthesizing arbitrary quantum states in a superconducting resonator, Nature, Volume 459 (2009), p. 546
[127] Arbitrary control of a quantum electromagnetic field, Phys. Rev. Lett., Volume 76 (1996), p. 1055
[128] The Jaynes–Cummings model, J. Mod. Opt., Volume 40 (1993), pp. 1195-1238
[129] Electric manipulation of spinless neutral atoms on a surface, Jpn. J. Appl. Phys., Volume 43 (2004), p. 358
Cité par Sources :
Commentaires - Politique