Comptes Rendus
Superconductivity and antiferromagnetism as interfering orders in organic conductors
[Supraconductivité et antiferromagnétisme comme mises en ordre interférentes dans les conducteurs organiques]
Comptes Rendus. Physique, Superconductivity of strongly correlated systems, Volume 12 (2011) no. 5-6, pp. 532-541.

La supraconductivité dans les conducteurs organiques quasi-unidimensionnels tels que les sels de Bechgaard émerge sous pression hydrostatique au seuil dʼinstabilité de la mise en ordre onde de densité de spin. Cette séquence dʼinstabilités est intimement liée aux anomalies rencontrées en phase normale pour la résistivité et le taux de relaxation nucléaire. Nous discutons de lʼorigine microscopique dʼun tel lien en termes dʼinterférence quantique entre les mécanismes responsables de lʼantiferromagnétisme et de la supraconductivité, lesquels peuvent être décrits à lʼaide de lʼapproche du groupe de renormalisation en couplage faible. Nous résumons à ce propos les derniers développements théoriques et leurs relations avec lʼexpérience.

Superconductivity in the Bechgaard salts series of quasi-one-dimensional organic conductors occurs on the verge of spin-density-wave ordering when hydrostatic pressure is applied. The sequence of instabilities is intimately connected to normal state anomalies in various quantities like the temperature dependence of electrical transport and nuclear spin–lattice relaxation rate. We discuss how such a connection takes its origin in the interference between the different pairing mechanisms responsible for antiferromagnetism and superconductivity, a duo that can be comprehended in terms of a weak coupling renormalization group theory. The recent developments along this line of though are presented in relation to experiments.

Publié le :
DOI : 10.1016/j.crhy.2011.04.005
Keywords: Organic conductors, Superconductivity, Antiferromagnetism, Scaling theory
Mots-clés : Conducteurs organiques, Supraconductivité, Antiferromagnétisme, Groupe de renormalisation

Claude Bourbonnais 1, 2 ; Abdeliouahab Sedeki 1

1 Regroupement Québécois sur les matériaux de pointe, département de physique, RQMP, université de Sherbrooke, Sherbrooke, Québec, Canada, J1K-2R1
2 Canadian Institute of Advanced Research, Toronto, Canada
@article{CRPHYS_2011__12_5-6_532_0,
     author = {Claude Bourbonnais and Abdeliouahab Sedeki},
     title = {Superconductivity and antiferromagnetism as interfering orders in organic conductors},
     journal = {Comptes Rendus. Physique},
     pages = {532--541},
     publisher = {Elsevier},
     volume = {12},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crhy.2011.04.005},
     language = {en},
}
TY  - JOUR
AU  - Claude Bourbonnais
AU  - Abdeliouahab Sedeki
TI  - Superconductivity and antiferromagnetism as interfering orders in organic conductors
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 532
EP  - 541
VL  - 12
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.04.005
LA  - en
ID  - CRPHYS_2011__12_5-6_532_0
ER  - 
%0 Journal Article
%A Claude Bourbonnais
%A Abdeliouahab Sedeki
%T Superconductivity and antiferromagnetism as interfering orders in organic conductors
%J Comptes Rendus. Physique
%D 2011
%P 532-541
%V 12
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2011.04.005
%G en
%F CRPHYS_2011__12_5-6_532_0
Claude Bourbonnais; Abdeliouahab Sedeki. Superconductivity and antiferromagnetism as interfering orders in organic conductors. Comptes Rendus. Physique, Superconductivity of strongly correlated systems, Volume 12 (2011) no. 5-6, pp. 532-541. doi : 10.1016/j.crhy.2011.04.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.04.005/

[1] D. Jérome; A. Mazaud; M. Ribault; K. Bechgaard J. Phys. Lett. (Paris), 41 (1980), p. L95

[2] D. Jérome; H.J. Schulz Adv. Phys., 31 (1982), p. 299

[3] C. Bourbonnais; D. Jérome The Physics of Organic Superconductors and Conductors (A. Lebed, ed.), Springer Ser. Mater. Sci., vol. 110, Springer, Heidelberg, 2008, p. 357 | arXiv

[4] F. Steglich; J. Aarts; W.L.C.D. Bredl; D. Meschede; W. Franz; H. Schäfer Phys. Rev. Lett., 43 (1979), p. 1892

[5] N.D. Mathur; F.M. Grosche; S.R. Julian; I.R. Walker; D.M. Freye; R.K.W. Haselwimmer; G.G. Lonzarich Nature, 394 (1998), p. 39

[6] J. Bednorz; K. Muller Z. Phys. B, 64 (1986), p. 189

[7] L. Taillefer Annu. Rev. Condens. Matter Phys., 1 (2010), p. 51

[8] N.P. Armitage; P. Fournier; R.L. Greene Rev. Mod. Phys., 82 (2010), p. 2421

[9] V.N. Laukhin; E.E. Kostyuchenko; Y.V. Sushko; I.F. Schegolev; E.B. Yagubskii JETP Lett., 41 (1985), p. 81

[10] H. Urayama; H. Yamochi; G. Saito; K. Nozawa; T. Sugano; M. Kinoshita; S. Sato; K. Oshima; A. Kawamoto; J. Tanaka Chem. Lett. (1988), p. 55

[11] K. Kanoda Physica C, 282–287 (1997), p. 299

[12] S. Lefebvre; P. Wzietek; S. Brown; C. Bourbonnais; D. Jérome; C. Mézière; M. Fourmigué; P. Batail Phys. Rev. Lett., 85 (2000), p. 5420

[13] B.J. Powell; R.H. McKenzie J. Phys.: Condens. Matter, 18 (2006), p. R827

[14] Y. Kamihara; T. Watanabe; M. Hirano; H. Hosono J. Am. Chem. Soc., 130 (2008), p. 3296

[15] L. Fang; H. Luo; P. Cheng; Z. Wang; Y. Jia; G. Mu; B. Shen; I.I. Mazin; L. Shan; C. Ren; H.H. Wen Phys. Rev. B, 80 (2009), p. 140508(R)

[16] C. Bourbonnais; A. Sedeki Phys. Rev. B, 80 (2009), p. 085105

[17] N. Doiron-Leyraud; P. Auban-Senzier; S.R. de Cotret; C. Bourbonnais; D. Jérome; K. Bechgaard; L. Taillefer Phys. Rev. B, 80 (2009), p. 214531

[18] N. Doiron-Leyraud; P. Auban-Senzier; S.R. de Cotret; C. Bourbonnais; A. Sedeki; D. Jérome; K. Bechgaard; L. Taillefer Eur. Phys. J. B, 78 (2010), p. 23

[19] W. Wu; P.M. Chaikin; W. Kang; J. Shinagawa; W. Yu; S.E. Brown Phys. Rev. Lett., 94 (2005), p. 097004

[20] S.E. Brown; P.M. Chaikin; M.J. Naughton The Physics of Organic Superconductors and Conductors (A. Lebed, ed.), Springer Ser. Mater. Sci., vol. 110, Springer, Heidelberg, 2008, p. 49

[21] K. Bechgaard; C. Jacobsen; K. Mortensen; H. Pedersen; N. Thorup Solid State Comm., 33 (1980), p. 1119

[22] F. Creuzet; C. Bourbonnais; L.G. Caron; D. Jérome; A. Moradpour Synth. Met., 19 (1987), p. 277

[23] T. Takahashi; Y. Maniwa; H. Kawamura; G. Saito Physica B, 143 (1986), p. 417

[24] L. Ducasse; A. Abderraba; J. Hoarau; M. Pesquer; B. Gallois; J. Gaultier J. Phys. C, 19 (1986), p. 3805

[25] T. Vuletic; P. Auban-Senzier; C. Pasquier; S. Tomic; D. Jérome; M. Heritier; K. Bechgaard Eur. Phys. J. B, 25 (2002), p. 319

[26] I.J. Lee; P.M. Chaikin; M.J. Naughton Phys. Rev. Lett., 88 (2002), p. 207002

[27] J. Shinagawa; Y. Kurosaki; F. Zhang; C. Parker; S.E. Brown; D. Jérome; K. Bechgaard; J.B. Christensen Phys. Rev. Lett., 98 (2007), p. 147002

[28] N. Joo; P. Auban-Senzier; C.R. Pasquier; D. Jérome; K. Bechgaard Europhys. Lett., 72 (2005), p. 645

[29] S. Yonezawa, et al., 2011, unpublished results.

[30] S. Kasahara; T. Shibauchi; K. Hashimoto; K. Ikada; S. Tonegawa; R. Okasaki; H. Shishido; H. Ikeda; H. Takeya; K. Hirata; T. Terashima; Y. Matsuda Phys. Rev. B, 81 (2010), p. 18519

[31] A.P. MacKenzie; S.R. Julian; D.C. Sinclair; C.T. Lin Phys. Rev. B, 53 (1996), p. 5848

[32] M. Abdel-Jawad; M.P. Kenett; A.C.L. Balicas; A.P. Mackenzie; R.H. Mackenzie; N.E. Hussey Nature Phys., 2 (2006), p. 821

[33] L. Taillefer Nature Phys., 8 (2006), p. 209

[34] P. Wzietek; F. Creuzet; C. Bourbonnais; D. Jérome; K. Bechgaard; P. Batail J. Phys. I, 3 (1993), p. 171

[35] C. Bourbonnais; F. Creuzet; D. Jérome; K. Bechgaard; A. Moradpour J. Phys. Lett. (Paris), 45 (1984), p. L755

[36] P.M. Grant J. Phys. (Paris) Coll., 44 (1983), p. 847

[37] V.J. Emery; R. Bruinsma; S. Barisic Phys. Rev. Lett., 48 (1982), p. 1039

[38] B.J. Klemme; S. Brown; P. Wzietek; P.B.G. Kriza; D. Jérome; J.-M. Fabre Phys. Rev. Lett., 75 (1995), p. 2408

[39] R. Duprat; C. Bourbonnais Eur. Phys. J. B, 21 (2001), p. 219

[40] J.C. Nickel; R. Duprat; C. Bourbonnais; N. Dupuis Phys. Rev. B, 73 (2006), p. 165126

[41] D. Zanchi; H.J. Schulz Phys. Rev. B, 61 (2000) no. 13, p. 609

[42] V.J. Emery Synth. Met., 13 (1986), p. 21

[43] L.G. Caron; C. Bourbonnais; C. Bourbonnais; L.G. Caron Europhys. Lett., 143 (1986), p. 453

[44] A. Sedeki, D. Bergeron, C. Bourbonnais, 2011, unpublished results.

[45] A. Abanov; A.V. Chubukov; J. Schmalian Adv. Phys., 52 (2003), p. 119

[46] Y. Vilk, A.-M. Tremblay, J. Phys. I (France) (1997).

  • Denis Jerome; Claude Bourbonnais Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective, Comptes Rendus. Physique, Volume 25 (2024) no. G1, pp. 17-178 | DOI:10.5802/crphys.164
  • Roemer D. H. Hinlopen; Owen N. Moulding; William R. Broad; Jonathan Buhot; Femke Bangma; Alix McCollam; Jake Ayres; Charles J. Sayers; Enrico Da Como; Felix Flicker; Jasper van Wezel; Sven Friedemann Lifshitz transition enabling superconducting dome around a charge-order critical point, Science Advances, Volume 10 (2024) no. 27 | DOI:10.1126/sciadv.adl3921
  • A. Kantian; M. Dolfi; M. Troyer; T. Giamarchi Understanding repulsively mediated superconductivity of correlated electrons via massively parallel density matrix renormalization group, Physical Review B, Volume 100 (2019) no. 7 | DOI:10.1103/physrevb.100.075138
  • R. T. Clay; S. Mazumdar From charge- and spin-ordering to superconductivity in the organic charge-transfer solids, Physics Reports, Volume 788 (2019), pp. 1-89 | DOI:10.1016/j.physrep.2018.10.006
  • Beilun Wu; Gaël Bastien; Mathieu Taupin; Carley Paulsen; Ludovic Howald; Dai Aoki; Jean-Pascal Brison Pairing mechanism in the ferromagnetic superconductor UCoGe, Nature Communications, Volume 8 (2017) | DOI:10.1038/ncomms14480
  • Denis Jerome; Shingo Yonezawa Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts, Comptes rendus - Physique, Volume 17 (2016) no. 3-4, pp. 357-375 | DOI:10.1016/j.crhy.2015.12.003
  • M. Shahbazi; C. Bourbonnais Seebeck coefficient in correlated low-dimensional organic metals, Physical Review B, Volume 94 (2016) no. 19 | DOI:10.1103/physrevb.94.195153
  • M. Shahbazi; C. Bourbonnais Electrical transport near quantum criticality in low-dimensional organic superconductors, Physical Review B, Volume 92 (2015) no. 19 | DOI:10.1103/physrevb.92.195141
  • H. Bakrim; C. Bourbonnais Role of electron-phonon interaction in a magnetically driven mechanism for superconductivity, Physical Review B, Volume 90 (2014) no. 12 | DOI:10.1103/physrevb.90.125119
  • Vladan Celebonovic, Journal of Physics: Conference Series, Volume 398 (2012) no. 1 | DOI:10.1088/1742-6596/398/1/012009
  • Denis Jérome Organic Superconductors: When Correlations and Magnetism Walk in, Journal of Superconductivity and Novel Magnetism, Volume 25 (2012) no. 3, p. 633 | DOI:10.1007/s10948-012-1475-7
  • A. Sedeki; D. Bergeron; C. Bourbonnais Extended quantum criticality of low-dimensional superconductors near a spin-density-wave instability, Physical Review B, Volume 85 (2012) no. 16 | DOI:10.1103/physrevb.85.165129
  • Denis Jerome Organic Superconductors: when correlations and magnetism walk in, arXiv (2012) | DOI:10.48550/arxiv.1201.5796 | arXiv:1201.5796

Cité par 13 documents. Sources : Crossref, NASA ADS

Commentaires - Politique