Comptes Rendus
Article de recherche
Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective
[Les conducteurs organiques quasi-unidimensionnels : de l’état isolant de Peierls et de la conductivité de Fröhlich à la supraconductivité à médiation magnétique, une rétrospective]
Comptes Rendus. Physique, Volume 25 (2024), pp. 17-178.

Il est indiscutable que c’est la possibilité d’aboutir à une supraconduction de haute température qui a stimulé le démarrage des recherches sur les conducteurs organiques. Suite à la découverte il y a plus de 50 ans, d’une conduction de type métallique dans des composés moléculaires, il est apparu que la composition chimique, la structure cristalline quasi-unidimensionnelle sont des facteurs qui déterminent les propriétés physiques de ces matériaux ; un remplissage de bande incommensurable favorisant généralement l’apparition d’une surstructure de type Peierls avec un état fondamental à basse température généralement isolant et plus rarement supraconductrice, alors qu’un remplissage commensurable peut conduire à basse température, soit à un isolant magnétique, soit à un supraconducteur suivant la force du couplage inter chaines. Il est à noter que la simplicité structurale de ces matériaux a contribué au développement de modèles théoriques en harmonie avec pratiquement toutes les observations expérimentales. Même si ces conducteurs organiques n’ont pas encore permis de stabiliser de la supraconduction à haute température, il n’en reste pas moins que la profusion de leurs propriétés physiques originales les qualifient comme des systèmes remarquables en physique de la matière condensée ainsi que pour leur valeur pédagogique. Cette revue historique est destinée à la présentation des propriétés expérimentales tout en faisant allusion aux développements théoriques des conducteurs et supraconducteurs de basse dimension qui seront l’objet d’un article de revue ultérieur.

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :

It is indisputable that the search for high-temperature superconductivity has stimulated the work on low-dimensional organic conductors at its beginning. Since the discovery of true metal-like conduction in molecular compounds more than 50 years ago, it appeared that the chemical composition and the quasi one-dimensional crystalline structure of these conductors were determining factors for their physical properties; materials with incommensurate conduction band filling favoring the low-dimensional electron-phonon diverging channel and the establishment of the Peierls superstructure and more rarely superconductivity at low temperature, while those with commensurate band filling favor either magnetic insulating or superconducting states depending on the intensity of the coupling between conductive chains. In addition, the simple structures of these materials have allowed the development of theoretical models in close cooperation with almost all experimental findings.

Even though these materials have not yet given rise to true high-temperature superconductivity, the wealth of their physical properties makes them systems of choice in the field of condensed matter physics due to their original properties and their educational qualities. Research efforts continue in this field. The present retrospective, which does not attempt to be an exhaustive review of the field, provides a set of experimental findings alluding to the theoretical development while a forthcoming article will address in more details the theoretical aspect of low dimensional conductors and superconductors.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.164
Keywords: Peierls–Frölich state, Physics of low dimensional systems, Phase transitions, Electron transport phenomena, Field-induced long-range order, Unconventional superconductivity, Organic conductors and superconductors, (TMTSF)2X salts
Mot clés : État de Peierls–Fröhlich, Physique des systèmes unidimensionnels, Transitions de phases, Transport électronique, Ordre à longue distance induit sous champ, Supraconductivité non conventionnelle, Conducteurs et supraconducteurs organiques, Sels organiques (TMTSF)2X

Denis Jerome 1 ; Claude Bourbonnais 2

1 Laboratoire de Physique des Solides (UMR 8502), Université Paris-Saclay 91405 Orsay, France
2 Regroupement Québécois sur les Matériaux de Pointe et Institut Quantique, Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K-2R1
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_G1_17_0,
     author = {Denis Jerome and Claude Bourbonnais},
     title = {Quasi one-dimensional organic conductors: from {Fr\"ohlich} conductivity and {Peierls} insulating state to magnetically-mediated superconductivity, a retrospective},
     journal = {Comptes Rendus. Physique},
     pages = {17--178},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.164},
     language = {en},
}
TY  - JOUR
AU  - Denis Jerome
AU  - Claude Bourbonnais
TI  - Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 17
EP  - 178
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.164
LA  - en
ID  - CRPHYS_2024__25_G1_17_0
ER  - 
%0 Journal Article
%A Denis Jerome
%A Claude Bourbonnais
%T Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective
%J Comptes Rendus. Physique
%D 2024
%P 17-178
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.164
%G en
%F CRPHYS_2024__25_G1_17_0
Denis Jerome; Claude Bourbonnais. Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. Comptes Rendus. Physique, Volume 25 (2024), pp. 17-178. doi : 10.5802/crphys.164. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.164/

[1] H. K. Onnes Further experiments with Liquid Helium. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. The Disappearance of the resistance of mercury, KNAW Proceedings, Volume 14 I, KNAW; Johannes Müller, Amsterdam (1911), pp. 113-115 (online at https://dwc.knaw.nl/DL/publications/PU00013124.pdf)

[2] H. K. Onnes Further experiments with Liquid Helium. On the electrical resistance of Pure Metals etc. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears, KNAW Proceedings, Volume 14 II, KNAW; Johannes Müller, Amsterdam (1911-1912), pp. 818-821 (online at https://dwc.knaw.nl/DL/publications/PU00013242.pdf)

[3] P. H. E. Meijer Kamerlingh Onnes and the discovery of superconductivity, Am. J. Phys., Volume 62 (1994), pp. 1105-1108 | DOI

[4] J. Bardeen; L. N. Cooper; J. R. Schrieffer Microscopic Theory of Superconductivity, Phys. Rev., Volume 106 (1957), pp. 162-164 | DOI | MR

[5] J. Bardeen; L. N. Cooper; J. R. Schrieffer Theory of Superconductivity, Phys. Rev., Volume 108 (1957), pp. 1175-1204 | DOI | MR | Zbl

[6] H. N. McCoy; W. C. Moore Organic amalgams: substances with metallic properties composed in part of non-metallic elements, J. Am. Chem. Soc., Volume 33 (1911), pp. 273-292 | DOI

[7] F. London; H. London Supraleitung und Diamagnetismus, Physica, Volume 2 (1935), pp. 341-354 | DOI | Zbl

[8] L. Pauling The diamagnetic anisotropy of aromatic molecules, J. Chem. Phys., Volume 4 (1936), pp. 673-677 | DOI

[9] F. London Théorie quantique des courants interatomiques dans les combinaisons aromatiques, J. Phys. Radium, Volume 8 (1937) no. 10, pp. 397-409 | DOI

[10] F. London Supraconductivity in Aromatic Compounds, J. Chem. Phys., Volume 5 (1937), pp. 837-838 | DOI

[11] H. Bouchiat; G. Montambaux Persistent currents in mesoscopic rings : ensemble averages and half-flux-quantum periodicity, J. Phys. I France, Volume 50 (1989), pp. 2695-2707 | DOI

[12] Low-Dimensional Cooperative Phenomena and the Possibility of High Temperature Superconductivity (H. J. Keller, ed.), NATO Advanced Study Institutes Series. Series B : Physics, 7, Plenum Press, 1975 (Lectures presented at the 1974 Nato Advanced Study Institute, held in Starnberg, Germany, September 3-15, 1974)

[13] D. D. Eley; G. D. Parfitt; M. J. Perry; D. H. Taysum The Semiconductivity of Organic Substances, Trans. Faraday Soc., Volume 49 (1953), pp. 79-86 | DOI

[14] H. Akamatu; H. Inokuchi On the Electrical Conductivity of Violanthrene, Iso-Violanthrene, and Pyranthrene, J. Chem. Phys., Volume 18 (1950) no. 6, pp. 810-811 | DOI

[15] H. Inokuchi The Effect of Pressure on the Semi-conductivity of Isoviolanthrone, Bull. Chem. Soc. Jpn., Volume 28 (1955) no. 8, pp. 570-572 | DOI

[16] H. Akamatu; H. Inokuchi; Y. Matsunaga Electrical Conductivity of the Perylene-Bromine Complex, Nature, Volume 173 (1954), pp. 168-169 | DOI

[17] D. S. Acker; R. J. Harder; W. R. Hertler; W. Mahler; L. R. Melby; R. E. Benson; W. E. Mochel 7,7,8,8-Tetracyanoquinodimethane and its electrically conducting Anion-Radical Derivatives, J. Am. Chem. Soc., Volume 82 (1960), pp. 6408-6409 | DOI

[18] J. J. André; A. Bieber; F. Gautier Physical properties of highly anisotropic systems: Radical-Ion salts and charge transfer complexes, Ann. Phys., Volume 1 (1976), pp. 145-256 | DOI

[19] L. R. Melby; R. J. Harder; W. R. Hertler; W. Mahler; R. E. Benson; W. E. Mochel Substituted Quinodimethans. Anion-radical Derivatives and Complexes of 7,7,8,8-Tetracyanoquinodimethan, J. Am. Chem. Soc., Volume 84 (1962), pp. 3374-3387 | DOI

[20] I. F. Shchegolev; L. I Burarov; A. V. Zvarykina; R. B. Lyubovskii Conduction mechanism of highly-conducting organic complexes based on TTF-TCNQ, JETP Lett.-USSR, Volume 8 (1968), p. 218-+

[21] I. F. Shchegolev Electric and Magnetic Properties of Linear Conducting Chains, Phys. stat. sol. (a), Volume 12 (1972), pp. 9-45 | DOI

[22] V. L. Ginzburg The Problem of High Temperature Superconductivity, Contemp. Phys., Volume 9 (1968) no. 4, pp. 355-374 | DOI

[23] L. R. Melby Salts derived from the 7,7,8,8-Tetracyanoquinodimethans. Anion-radical and Benzologues of Quaternary Pyrazinium Cations, Can. J. Chem., Volume 43 (1965), pp. 1448-1453 | DOI

[24] A. J. Epstein; A. F. Garito; S. D. Etemad; A. J. Heeger Metal–Insulator Transition in an organic Solid: Experimental Realization of the one-dimensional Hubbard Model, Solid State Comm., Volume 9 (1971), pp. 1803-1808 | DOI

[25] F. Devreux; M. Nechtchein Nuclear relaxation in 1D conductors, Proc. of the International Conference of Quasi-One-Dimensional Conductors I (S. Barišić; A. Bjeliś; J. R. Cooper; B. Leontić, eds.) (Lectures Notes in Physics), Volume 95, Springer (1978), pp. 145-152 | DOI

[26] S. Flandrois; D. Chasseau Longueurs de Liaison et Transfert de Charge dans les Sels du Tetracyanoquinodiméthane, Acta Cryst. B, Volume B33 (1977), pp. 2744-2750 | DOI

[27] R. Comès; M. Lambert; H. Launois; H. R. Zeller Evidence for a Peierls Distortion or a Kohn Anomaly in One-Dimensional Conductors of the Type K 2 Pt(CN) 4 Br 0.30 xH 2 O, Phys. Rev. B, Volume 8 (1973), pp. 571-575 | DOI

[28] F. Denoyer; R. Comès; A. F. Garito; A. J. Heeger X-ray diffuse sattering evidence for a phase transition in TTF-TCNQ, Phys. Rev. Lett., Volume 35 (1975), pp. 445-449 | DOI

[29] J.-P. Pouget; R. Comès; A. J. Epstein; J. S. Miller X-ray observation of cross over of 2k F to 4k F scattering in (NMP) x Phen 1-x (TCNQ)0.511, Mol. Cryst. Liq. Cryst., Volume 85 (1982) no. 1–4, pp. 203-213

[30] G. Hardy; J. K. Hulm Superconducting Silicides and Germanides, Phys. Rev., Volume 87 (1953), p. 884 | DOI

[31] B. T. Matthias; T. H. Geballe; S. Geller; E. Corenwitz Superconductivity of Nb 3 Sn, Phys. Rev, Volume 95 (1954), p. 1435 | DOI

[32] J. R. Gavaler Superconductivity in Nb-Ge films above 22 K, Appl. Phys. Lett, Volume 23 (1973), pp. 480-482 | DOI

[33] B. T. Matthias The search for high-temperature superconductors, Physics Today, Volume 24 (1971), pp. 23-28 | DOI

[34] M. Weger The Electronic Band Structure of V 3 Si and V 3 Ga, Reviews of Modern Physics, Volume 36 (1964), pp. 175-177 | DOI

[35] J. Labbé; J. Friedel Instabilité électronique et changement de phase cristalline des composés du type V 3 Si à basse température, J. Phys. I France, Volume 27 (1966), pp. 153-165 | DOI

[36] J. Labbé; S. Barišić; J. Friedel Strong-coupling superconductivity in V 3 X type of Compounds, Physical Review Letters, Volume 19 (1967) no. 18, pp. 1039-1041 | DOI

[37] G. M. Eliashberg Interactions between Electrons and Lattice vibrations in a Superconductor, Sov. Phys. JETP, Volume 11 (1960) no. 3, pp. 696-702 | Zbl

[38] W. Kohn; J. M. Luttinger New Mechanism for Superconductivity, Phys. Rev. Lett., Volume 15 (1965), pp. 524-526 | DOI

[39] J. Friedel Metallic alloys, Nuovo Cim., Volume 7 (1958) no. 2, pp. 287-311 | DOI

[40] W. A. Little Possibility of Synthesizing an Organic Superconductor, Phys. Rev. A, Volume 134 (1964), p. A1416-A1424 | DOI

[41] D. Jerome Historical Approach to Organic Superconductivity, The Physics of Organic Superconductors and Conductors (A. G. Lebed, ed.) (Springer Series in Materials Science), Volume 110, Springer, 2008 | DOI

[42] W. A. Little Superconductivity at Room Temperature, Scientific American, Volume 212 (1965) no. 2, pp. 21-27

[43] V. L. Ginzburg High Temperature Superconductivity, J. Polymer. Sci. C., Volume 29 (1970), pp. 3-16 | DOI

[44] J. Ladik; G. Biczó; J. Redly Possibility of Superconductive-Type Enhanced Conductivity in DNA at Room Temperature, Phys. Rev., Volume 188 (1969), pp. 710-715 | DOI

[45] W. A. Little International symposium on the physical and chemical problems of possible organic superconductors, Physics Department, Stanford University, 1969

[46] W. A. Little The exciton mechanism in superconductivity, J. polym. sci., Polym. symp., Volume 9 (1970), pp. 17-26 | DOI

[47] Yu. A. Byschkov; L. P. Gorkov; I. E. Dzyaloshinskii Possibility of Superconductivity type phenomena in a one-dimensional system, Sov. Phys. JETP, Volume 23 (1966), pp. 489-501 | DOI

[48] L. D. Landau; E. M. Lifshitz Statistical Physics, Pergamon Press, London, 1959, 482 pages

[49] N. D. Mermin; H. Wagner Absence of ferromagnetism or antiferromagnetism in one or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., Volume 17 (1966), pp. 1133-1136 | DOI

[50] F. Wudl; G. M. Smith; E. J. Hufnagel Bis-1,3 =dithiolium Chloride: an Unusually Stable Organic Radical Cation, Chem. Comm. (1970), pp. 1453-1454 | DOI

[51] F. Wudl; D. Wobschall; E. J. Hufnagel Electrical Conductivity by the Bis-l,3-dithiole-Bis-1,3-dithiolium System, J. Am. Chem. Soc. (1972), pp. 670-672 | DOI

[52] M. R. Bryce Tetrathiafulvalenes as pi-Electron Donors for Intramolecular Charge-Transfer Materials, Adv. Mater., Volume 1 (199), pp. 11-23

[53] A. Aviram; M. A. Ratner Molecular rectifiers, Chem. Phys. Lett., Volume 29 (1974), pp. 277-283 | DOI

[54] M. Bendikov; F. Wudl; D. M. Perepichka Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics, Chem. Rev., Volume 104 (2004), pp. 4891-4945 | DOI

[55] S. J. La Placa; P. W. R. Corfield; R. Thomas; B. A. Scott Non-integral charge transfer in an organic metal: The structure and stability range of (TTF)Br x , Solid State Comm., Volume 17 (1975), pp. 635-638 | DOI

[56] P. M. Chaikin; R. A Craven; S. D. Etemad et al. Commensurate Peierls transition in a quasi-one-dimensional compound: The bromide salt of tetrathiafulvalene (TTF), Phys. Rev. B, Volume 22 (1980), pp. 5599-5605 | DOI

[57] L. B. Coleman; M. J. Cohen; D. J. Sandman; F. G. Yamagishi; A. F. Garito; A. J. Heeger Superconducting Fluctuations and the Peierls instability in an organic solid, Solid State Comm., Volume 12 (1973), pp. 1125-1132 | DOI

[58] J. Ferraris; D. O. Cowan; W. Walatka; J. H. Perlstein Electron Transfer in a New Highly Conducting Donor-Acceptor Complex, J. Am. Chem. Soc, Volume 95 (1973), pp. 948-949 | DOI

[59] A. A. Bright; A. F. Garito; A. J. Heeger Optical properties of TTF-TCNQ in the visible and infrared, Solid State Comm., Volume 13 (1973), pp. 943-948 | DOI

[60] T. J. Kistenmacher; T. E. Phillips; D. O. Cowan The Crystal Structure of the 1:1 radical cation-radical anion salt of 2,2 -bis-l,3-dithiole (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ), Acta Cryst. B, Volume 30 (1974), pp. 763-768 | DOI

[61] K. Bechgaard; C. S. Jacobsen; K. Mortensen; H. J. Pedersen; N. Thorup The properties of five highly conducting salts derived from TMTSF, Solid State Comm., Volume 33 (1980), pp. 1119-1125 | DOI

[62] R. P. Van Duyne; T. W. Cape; M. R. Suchanski; A. R. Seidle Determination of the Extent of Charge Transfer in Partially Oxidized Derivatives of Tetrathiafulvalene and Tetracyanoquinodimethan by Resonance Raman Spectroscopy, J. Phys. Chem., Volume 90 (1986), pp. 739-743 | DOI

[63] H. Anzai Growth of Large-Crystals of Charge-Transfer complex, Tetrathiofulvalene-Tetracyanoquinodimethane (TTF-TCNQ), J. Cryst. Growth., Volume 33 (1976), pp. 185-187 | DOI

[64] Molecular Conductors, Chem. Rev. (P. Batail, ed.), Volume 104, 2004 no. 11, pp. 4887-5782

[65] R. L. Greene; J. J. Mayerle; R. Schumaker; G. Castro; P. M. Chaikin; S. D. Etemad; S. J. La Placa The Structure, Conductivity, and Thermopower of HMTTF-TCNQ, Solid State Comm., Volume 20 (1976), pp. 943-946 | DOI

[66] A. A. Bright; A. F. Garito; A. J. Heeger Optical conductivity studies in a one-dimensional organic metal: Tetrathiofulvalene tetracyanoquinodimethan (TTF-TCNQ), Phys. Rev. B, Volume 10 (1974), pp. 1328-1342 | DOI

[67] P. Calas; J.-M. Fabre; E. Toreilles; L. Giral Synthèse de dérivés du tétrathiofulvalène, C. R. Hebd. Seances Acad. Sci. C, Volume 280 (1975), pp. 901-903 (online at https://gallica.bnf.fr/ark:/12148/bpt6k6224856m/f51.item)

[68] G. Brun; S. Peytavin; B. Liautard; M. Maurin; E. Toreilles; J.-M. Fabre; L. Giral Sur quelques nouveaux complexes organiques à propriétés anisotropes, C. R. Hebd. Seances Acad. Sci. C, Volume 284 (1977) no. 5, pp. 211-213 (online at https://gallica.bnf.fr/ark:/12148/bpt6k62367869/f223.item)

[69] J. C. Scott; A. F. Garito; A. J. Heeger Magnetic susceptibility studies of tetrathiofulvalene-tetracyanoquinodimethan TTF-TCNQ and related organic metals, Phys. Rev. B, Volume 10 (1974), pp. 3131-3139 | DOI

[70] K. Bechgaard; D. O. Cowan; A. N. Bloch Synthesis of the Organic Conductor Tetramethyltetraselenofulvalenium, 7,7,8,8-tetracyano-p-quinodimethanide (TMTSF–TCNQ)[4,4 ,5,5 -tetramethyl-Δ2,2 -bis-1,3-diselenolium 3,6-bis-(dicyanomethylene)cyclohexadienide], J. Chem. Soc., Chem. Commun. (1974), pp. 937-938 | DOI

[71] E. M. Engler; V. M. Patel Structure Control in Organic Metals. Synthesis of Tetraselenofulvalene and Its Charge Transfer Salt with Tetracyano-p -quinodimethane, J. Am. Chem. Soc, Volume 96 (1974), pp. 7376-7378 | DOI

[72] K. Bechgaard; D. O. Cowan; A. N. Bloch Stabilization of the organic metallic state: The Properties of Two Substituted Tetraselenafulvalenes and Their TCNQ Salts, Mol. Cryst. Liq. Cryst., Volume 49 (1976) no. 32, pp. 227-230 | DOI

[73] F. Wudl; D. E. Schafer; W. M. Walsh et al. A systematic study of an isomorphous series of organic solid state conductors based on tetrathiafulvalene, J. Chem. Phys., Volume 66 (1977), pp. 377-385 | DOI

[74] H. Strzelecka; L. Giral; J.-M. Fabre; E. Torreilles; G. Brun Nouvelle voie d’accès à des conducteurs organiques: Action du Thiocyanogene sur le Tetrathiofulvalene et le Tetramethyltetrathiofulvalene, C. R. Hebd. Seances Acad. Sci. C, Volume 284 (1977) no. 12, pp. 463-465 (online at https://gallica.bnf.fr/ark:/12148/bpt6k6216790n/f35.item)

[75] P. Delhaes; C. Coulon; J. Amiell; S. Flandrois; E. Toreilles; J.-M. Fabre; L. Giral Physical Properties of One Dimensional Conductors, Mol. Cryst. Liq. Cryst., Volume 50 (1979), pp. 43-58 | DOI

[76] A. A. Edelsack; D. U. Gubser; S. A. Wolf The rocky road to high temperature superconductivity, Novel Supercondcutivity (S. A. Wolf; V. Z. Kresin, eds.), Volume 12, Plenum Press, New York, 1987, pp. 1-8 | DOI

[77] J. G. Bednorz; K. A. Müller Possible High Tc Superconductivity in the BaLaCu0 System, Z. Phys. B - Condensed Matter, Volume 64 (1986), pp. 189-193 | DOI

[78] K. Bechgaard (Wikipedia, https://en.wikipedia.org/wiki/Klaus_Bechgaard)

[79] C. S. Jacobsen; K. Mortensen; J. R. Andersen; K. Bechgaard Transport properties of some derivatives of tetrathiafulvalene-tetracyano-p-quinodimethane (TTF-TCNQ), Phys. Rev. B, Volume 18 (1978), pp. 905-921 | DOI

[80] V. N. Laukhin; A. I. Kotov; M. L. Khidekel; I. F. Shchegolev; E. B. Yagubskiǐ Metallic high pressure phase in tetraselenotetracene chloride (TSeT) 2 Cl, JETP Lett., Volume 28 (1978) no. 5, pp. 284-287

[81] K. Bechgaard (TMTSF) 2 X Salts: Preparation, Structure and Effect of the Anions, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 357-369 (Proc International Conference on Low-Dimensional Conductors) | DOI

[82] P. Batail; K. Boubekeur; M. Fourmigué; J. C. P. Gabriel Electrocrystallization, an Invaluable Tool for the Construction of Ordered, Electroactive Molecular Solids, Chem. Mater., Volume 10 (1998), pp. 3005-3015 | DOI

[83] K. Bechgaard; D. Jerome; A. Moradpour Electrocrystallisation of organic superconductors, 2023 (Video, Zenodo, online at https://doi.org/10.5281/zenodo.8064104) | DOI

[84] A. F. Garito; A. J. Heeger The Design and Synthesis of Organic Metals, Acc. Chem. Res., Volume 7 (1974), pp. 232-240 | DOI

[85] A. J. Berlinsky; J. F. Carolan; L. Weiler Band structure parameters for SolidTTF-TCNQ, Solid State Comm., Volume 15 (1974), pp. 795-801 | DOI

[86] D. Jerome; H. J. Schulz Organic conductors and superconductors, Adv. Phys., Volume 31 (1982), pp. 299-490 | DOI

[87] S. Shitzkovsky; M. Weger; H. Gutfreund Band Structure of TTF-TCNQ, J. Phys. I France, Volume 39 (1978), pp. 711-717 | DOI

[88] D. Jerome; M. Weger Electronic properties of organic conductors: pressure effects, Chemistry and Physics of One-Dimensional Metals (H. J. Keller, ed.), Plenum Press (New York), 1977, pp. 341-367 | DOI

[89] G. Soda; D. Jerome; M. Weger; K. Bechgaard; E. Pedersen Spin relaxation and Magnetic susceptibility studies of HMTSF-TCNQ, Solid State Comm., Volume 20 (1976), pp. 107-113 | DOI

[90] R. E. Peierls Quantum Theory of Solids, Oxford University Press, London, 1955

[91] G. Lubkin Superconducting fluctuations at 60K?, Physics Today, Volume May (1973), p. 17

[92] B. R. Patton Fluctuation Theory of the Superconducting Transition in Restricted Dimensionality, Phys. Rev. Lett., Volume 27 (1971) no. 19, pp. 1273-1276

[93] S. D. Etemad; T. Penney; E. M. Engler; B. A. Scott; P. E. Seiden DC Conductivity in an Isostructural Family of Organic Metals, Phys. Rev. Lett., Volume 34 (1975), pp. 741-744 | DOI

[94] S. Barišić Rigid-Atom Electron-Phonon Coupling in the Tight-Binding Approximation, Phys. Rev. B, Volume 5 (1972) no. 3, pp. 932-941 | DOI

[95] D. E. Schafer; F. Wudl; G. A. Thomas; J. P. Ferraris; D. O. Cowan Apparent Giant Conductivity peaks in an anisotropic medium TTF-TCNQ, Solid State Comm., Volume 14 (1974), pp. 347-351 | DOI

[96] G. A. Thomas; D. E. Schafer; F. Wudl et al. Electrical conductivity of tetrathiofulvalenium-tetracyanoquinodimethanide (TTF-TCNQ), Phys. Rev. B, Volume 13 (1976) no. 11, pp. 5105-5110

[97] J. R. Cooper; J. Lukatela; M. Miljak; J.-M. Fabre; L. Giral; E. Aharon-Shalom Isotope Effect in the Peierls transition temperature of TTF-TCNQ, Solid State Comm., Volume 25 (1978), pp. 699-704 | DOI

[98] R. H. Friend; M. Miljak; D. Jerome Pressure dependence of the phase transitions in tetrathiafulvalene-tetracyanoquinodimethane: Evidence for a longitudinal lockin at 20 kbar, Phys. Rev. Lett., Volume 40 (1978), pp. 1048-1051 | DOI

[99] G. Soda; D. Jerome; M. Weger; J. Alizon; J. Gallice; H. Robert; J.-M. Fabre; L. Giral Electronic Properties of TTF-TCNQ: an NMR Approach, J. Phys. I France, Volume 38 (1977), pp. 931-948 | DOI

[100] J. R. Cooper; D. Jerome; S. D. D. Etemad; E. M. Engler On the behaviour of TSF-TCNQ under pressure, Solid State Comm., Volume 22 (1977), pp. 257-263 | DOI

[101] P. M. Grant; R. L. Greene; G. C. Wrighton; G. Castro Temperature Dependence of the Near-Infrared Optical Properties of Tetrathiofulvalinium Tetracyanoquinodimethane TTF-TCNQ, Phys. Rev. Lett., Volume 31 (1973), pp. 1311-1314 | DOI

[102] N. P. Ong; A. M. Portis Microwave Hall effect in a quasi-one-dimensional system: Tetrathiafulvalenium-tetracyanoquinodimethanide TTF-TCNQ, Phys. Rev. B, Volume 15 (1977), p. 1782 | DOI

[103] M. J. Cohen; L. B. Coleman; A. F. Garito; A. J. Heeger Electrical conductivity of tetrathiofulvalinium tetracyanoquinodimethan TTF-TCNQ, Phys. Rev. B, Volume 10 (1974) no. 4, pp. 1298-1307 | DOI

[104] D. Jerome Fluctuating collective conductivity and single particle conductivity in 1-D organic conductors, The Physics and Chemistry of Low Dimensional Solids (L. Alcacer, ed.), D. Reidel, 1980, pp. 123-142

[105] J. Bardeen Superconducting Fluctuations in one-dimensional Organic Solids, Solid State Comm., Volume 13 (1973), pp. 357-359 | DOI

[106] D. Allender; J. W. Bray; J. Bardeen Theory of fluctuation superconductivity from electron-phonon interactions in pseudo-one-dimensional systems, Phys. Rev. B, Volume 9 (1974) no. 1, pp. 119-129 | DOI

[107] H. Fröhlich On the theory of superconductivity: the one-dimensional case, Proc. R. Soc. Lond. A, Volume 223 (1954), pp. 296-305 | DOI | Zbl

[108] B. R. Patton; L. J. Sham Fluctuation conductivity in the incommensurate Peierls system, Phys. Rev. Lett., Volume 35 (1974) no. 11, pp. 638-641 | DOI

[109] S. Kagoshima; H. Anzai; K. Kajimura; T. Ishiguro Observation of the Kohn anomaly and the Peierls transition in TTF-TCNQ by X-ray scattering, J. Phys. Soc. Jpn., Volume 39 (1975) no. 4, pp. 1143-1144 | DOI

[110] R. Comès; S. M. Shapiro; G. Shirane; A. F. Garito; A. J. Heeger Neutron-Scattering Study of the 38 and 54K Phase Transitions in Deuterated Tetrathiafulvalene-Tetracyanoquinodimethane TTF-TCNQ, Phys. Rev. Lett.., Volume 35 (1975) no. 22, pp. 1518-1521 | DOI

[111] T. Takahashi; D. Jerome; F. Masin; J.-M. Fabre; L. Giral 13 C NMR studies of TTF( 13 C)-TCNQ, J. Phys. C: Solid State Phys., Volume 17 (1984), pp. 3777-3792 | DOI

[112] E. F. Rybaczewski; S. Smith; A. F. Garito; A. J. Heeger; B. G. Silbernagel 13 C Knight shift in TTF-TCNQ 13 C: Determination of the local susceptibility, Phys. Rev. B, Volume 14 (1976) no. 7, pp. 2746-2756 | DOI

[113] Y. Tomkiewicz; A. R. Taranko; J. B. Torrance Spin susceptibility of tetrathiafulvalene tetracyanofluinodimethane, TTF-TCNQ in the semiconducting regime: Comparison with conductivity, Phys. Rev. B, Volume 15 (1977) no. 2, pp. 1017-1023 | DOI

[114] P. Bak; V. J. Emery Theory of the Structural Phase Transformations in Tetrathiafulvalene-Tetracyanoquinodimethane TTF-TCNQ, Phys. Rev. Lett., Volume 36 (1976), pp. 978-982 | DOI

[115] T. Nishiguchi; M. Kageshima; N. Ara-Kato; A. Kawazu Behavior of Charge Density Waves in a One-Dimensional Organic Conductor Visualized by Scanning Tunneling Microscopy, Phys. Rev. Lett., Volume 81 (1998) no. 15, pp. 3187-3190 | DOI

[116] Z. Z. Wang; J. C. Girard; C. Pasquier; D. Jerome; K. Bechgaard Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves, Phys. Rev. B, Volume 67 (2003), 121401 | DOI

[117] N. A. Kato; M. Hara; H. Sasabe; W. Knoll An interpretation for the STM imaging of an organic molecule, tetrathiafulvalene–tetracyanoquinodimethane (TTF-TCNQ), Nanotechnology, Volume 7 (1996), pp. 122-127 | DOI

[118] E. Abrahams; J. Solyom; F. Woynarovich The Landau theory of phase transitions in TTF-TCNQ, Phys. Rev. B, Volume 16 (1977), pp. 5238-5249 | DOI

[119] A. Bjeliś; S. Barišić Commensurate Ordering in Tetrathiafulvalene-Tetracyanoquinodimethane, Phys. Rev. Lett., Volume 37 (1976), p. 1517 | DOI

[120] R. Comès; G. Shirane X-ray scattering and Neuron scattering from one-dimensional conductors, Highly Conducting One-Dimensional Solids (J. T. Devreese, ed.), Plenum Press, New York, 1979, pp. 17-67 | DOI

[121] J.-P. Pouget; S. K. Khanna; F. Denoyer; R. Comès; A. F. Garito; A. J. Heeger X Ray Observation of 2k F and 4k F Scatterings in Tetrathiafulvalene-Tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. Lett., Volume 37 (1976), pp. 437-440 | DOI

[122] J.-P. Pouget The Peierls instability and charge density wave in one-dimensional electronic conductors, Comptes Rendus Physique, Volume 17 (2016), pp. 332-356 | DOI

[123] S. K. Khanna; J.-P. Pouget; R. Comes; A. F. Garito; A. J. Heeger X-ray studies of 2k F and 4k F anomalies in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. B, Volume 16 (1977) no. 4, pp. 1468-1479 | DOI

[124] V. J. Emery New Mechanism for a Phonon Anomaly and Lattice Distortion in Quasi One-Dimensional Conductors, Phys. Rev. Lett., Volume 37 (1976), pp. 107-110 | DOI

[125] J. Voit; H. J. Schulz Electron-phonon interaction and phonon dynamics in one-dimensional conductors, Phys. Rev. B, Volume 37 (1988), pp. 10068-10085 | DOI

[126] H. Basista; D. A. Bonn; T. Timusk; J. Voit; D. Jerome; K. Bechgaard Far-infrared optical properties of tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. B, Volume 42 (1990), pp. 4088-4099 | DOI

[127] J.-P. Pouget Chapter 3 Structural Instabilities (Esther Conwell, ed.) (Semiconductors and Semimetals), Volume 27, Elsevier, 1988, pp. 87-214 | DOI

[128] J. Bernasconi; M. J. Rice; W. R. Schneider; S. Strässeler Peierls transition in the strong-coupling Hubbard chain, Phys. Rev. B, Volume 12 (1975), pp. 1090-1092 | DOI

[129] G. Malfait; D. Jerome Techniques de hautes pressions à trés basses températures, Revue de Physique Appliquée, Volume 4 (1969), pp. 467-470 | DOI

[130] G. Delplanque; G. Malfait; M. Rieux; D. Jérome Appareil de pression hysdrostatique pour mesures éléctriques jusqu’à 17 kbar à très basse température, Rev. Phys. Appl. (Paris), Volume 5 (1970), pp. 731-736 | DOI

[131] A. Andrieux; H. J. Schulz; D. Jerome; K. Bechgaard Conductivity of the One-Dimensional Conductor Tetrathiafulvalene-Tetracyanoquinodimethane (TTF-TCNQ) near Commensurability, Phys. Rev. Lett., Volume 43 (1979) no. 3, pp. 227-230 | DOI

[132] A. Andrieux; H. J. Schulz; D. Jerome; K. Bechgaard Fluctuation conductivity in 1-D conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), J. Physique Lett., Volume 40 (1979), pp. 385-389 | DOI

[133] S. Megtert; R. Comès; C. Vettier; R. Pynn; A. F. Garito Structural evidence of 2k F commensurablity in TTF-TCNQ under pressure, Solid State Comm., Volume 37 (1981), pp. 875-877 | DOI

[134] D. Jerome; H. J. Schulz Quasi-One-Dimensional conductors:The Peierls instability, Pressure and Fluctuations effects, Extended Linear Chain Compounds (J. S. Miller, ed.), Volume 2, Plenum Press, New York, 1982, p. 159

[135] B. Welber; P. E. Seiden; P. M. Grant Pressure dependence of the Drude optical edge of tetrathiafulvalenium (TTF) and tetraselenafulvalenium (TSF) tetracyanoquinodimethanide (TCNQ), Phys. Rev. B, Volume 118 (1978), pp. 2692-2700 | DOI

[136] S. Bouffard; R. Chipaux; D. Jerome; K. Bechgaard Pinning of charge density waves in irradiated TTF-TCNQ, Solid State Comm., Volume 37 (1981), pp. 405-408 | DOI

[137] D. B. Tanner; K. D. Cummings; C. S. Jacobsen Far-Infrared Study of the Charge Density Wave in Tetrathiafulvalene Tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. Lett., Volume 47 (1981), pp. 597-600 | DOI

[138] R. H. Friend; M. Miljak; D. Jérome; D. L. Decker; D. Debray Linear Temperature Dependence of the constant Volume Resistivity of TTF-TCNQ, J. Physique Lett., Volume 39 (1978), pp. 134-138 | DOI

[139] F. Herman Scattered Wave Calculations of Monomers and Dimers of Tetraselenafulvalene (mathrmTSeF), Phys. Scr., Volume 16 (1977), pp. 303-306 | DOI

[140] F. Herman; D. R. Salahub; R. P. Messmer Xa scattered-wave calculations for dimers and trimers of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ), Phys. Rev. B, Volume 16 (1977), pp. 2453-2465 | DOI

[141] G. Grüner; P. Monceau Dynamical properties of charge density waves, Charge Density Waves in Solids (L. V. Gorkov; G. Grüner, eds.), North Holland, Amsterdam, 1989, pp. 137-190

[142] L. Forro; R. C. Lacoe; S. Bouffard; D. Jerome Defect-concentration dependence of the charge-density-wave transport in tetrathiafulvalene tetracyanoquinodimethane, Phys. Rev. B, Volume 35 (1987), pp. 5884-5886 | DOI

[143] R. C. Lacoe; H. J. Schulz; D. Jerome; K. Bechgaard; I. Johannsen Observation of Nonlinear Electrical Transport at the Onset of a Peierls Transition in an Organic Conductor, Phys. Rev. Lett., Volume 55 (1985) no. 21, pp. 2351-2354 | DOI

[144] R. C. Lacoe; J. R. Cooper; D. Jerome; F. Creuzet; K. Bechgaard; I. Johannsen Nonlinear Electrical Transport Effects in Tetrathiafulvalene-Tetracyanoquinodimethane as Driven through Charge-Density-Wave Commensurability, Phys. Rev. Lett., Volume 58 (1987) no. 3, pp. 262-265 | DOI

[145] G. Grüner; P. Monceau Dynamical Properties of charge density waves, Charge Density Waves in Solids (L. V. Gorkov; G. Grüner, eds.) (Modern Problems in Condensed Matter Sciences), Volume 25, North-Holland, 1989, pp. 137-189 | DOI

[146] S. Yasuzuka; K. Murata; T. Arimoto; R. Kato Temperature-Pressure Phase Diagram in TTF-TCNQ: Strong Suppression of Charge-Density-Wave State under Extremely High Pressure, J. Phys. Soc. Jpn., Volume 76 (2007) no. 3, 033701 | DOI

[147] B. Horovitz; H. Gutfreund; M. Weger Interchain coupling and the Peierls transition in linear-chain systems, Phys. Rev. B, Volume 12 (1975), pp. 3174-3185 | DOI

[148] E. M. Engler; B. A. Scott; S. D. Etemad; T. Penney; V. V. Patel Organic Alloys: Synthesis and Properties of Solid Solutions of Tetraselenafulvalene- Tetracyano-p-quinodimethane (TSF-TCNQ) and Tetrathiafulvalene-Tetracyano-p-quinodimethane (TTF-TCNQ), J. Am. Chem. Soc., Volume 99 (1977), pp. 5909-5916 | DOI

[149] J.-P. Pouget; S. Megtert; R. Comès X ray diffuse scattering study of 1D organic conductors: TTF-TCNQ and its family, Proceeding of the International Conference Dubrovnik, SR Croatia, SFR Yugoslavia (Lecture Notes in Physics), Volume 95, Springer, Berlin, Heidelberg, 1979, pp. 14-27 | DOI

[150] P. M. Chaikin; R. L. Greene; S. D. Etemad; E. M. Engler Thermopower of an isostructural series of organic conductors, Phys. Rev. B, Volume 13 (1976), pp. 1627-1632 | DOI

[151] C. Weyl; E. M. Engler; K. Bechgaard; G. Jehanno; S. D. Etemad Diffuse X-ray scattering in the metallic state of TSF-TCNQ and HMTSF-TCNQ, Solid State Comm., Volume 19 (1976), pp. 925-930 | DOI

[152] S. D. Etemad Systematic study of the transitions in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) and its selenium analogs, Phys. Rev. B, Volume 13 (1976) no. 6, pp. 2254-2261 | DOI

[153] J. C. Scott; S. D. Etemad; E. M. Engler Magnetic susceptibility of TSF-TCNQ (tetraselenafulvalene-tetracyanoquinodimethane) and its alloys with TTF-TCNQ, Phys. Rev. B, Volume 17 (1978), pp. 2269-2275 | DOI

[154] F. E. Bates; J. E. Eldridge; M. R. Bryce High-resolution polarized far-infrared vibrational spectra of semiconducting TTF-TCNQ and TSF-TCNQ, Can. J. Phys, Volume 59 (1981), pp. 339-362 | DOI

[155] S. Kagoshima; T. Ishiguro; T. D. Schultz; Y. Tomkiewicz Peierls transition and short range order of charge-density waves in TSeF-TCNQ - an X ray study, Quasi One-Dimensional Conductors I (S. Bariŝić; A. Bjeliŝ; J. R. Cooper; B. A. Leontić, eds.) (Lecture Notes in Physics), Volume 95, Springer, 1979, pp. 28-30 | DOI

[156] J. F. Thomas Fluctuating and single particles conductivity channels in TSF-TCNQ, Solid State Comm., Volume 42 (1982), pp. 587-589 | DOI

[157] S. Megtert; J.-P. Pouget; R. Comès Structural Investigations of the Peierls Transitions in TTF-TCNQ and Related Compounds (TSEF-TCNQ, HMTTF-TCNQ, NMP-TCNQ), Molecular Metals (W. E. Hatfield, ed.), Plenum Press, New York, 1979, pp. 87-103 | DOI

[158] J. F. Thomas; D. Jerome Commensurability and fluctuating conductivity in the organic conductor TSF-TCNQ, Solid State Comm., Volume 36 (1980), pp. 813-816 | DOI

[159] G. Beni Peierls transition in a quasi—one dimensional system, Solid State Comm., Volume 15 (1974), pp. 269-272 | DOI

[160] A. N. Bloch; D. O. Cowan; K. Bechgaard; R. E. Pyle; R. H. Banks; T. O. Poehler Low-Temperature Metallic Behavior and Resistance Minimum in a New Quasi One-Dimensional Organic Conductor, Phys. Rev. Lett., Volume 34 (1975), pp. 1561-1564 | DOI

[161] R. H. Friend et al. Stabilisation of the metallic state at low temperatures in HMTTF-TCNQ under pressure, J. Phys. C: Solid State Phys., Volume 11 (1978), p. 263 | DOI

[162] T. E. Phillips; T. J. Kistenmacher; A. N. Bloch; D. O. Cowan X-Ray Crystal Structure of the Organic Conductor from 2,2 - Bi - (2,4 - diselenabicyclo[3.3.0]octylidene) and 7,7,8,8-Tetracyano - p -quinodimethane (HMTSF-TCNQ), J. Chem. Soc., Chem. Commun. (1976), pp. 334-335 | DOI

[163] B. Korin; J. R. Cooper; M. Miljak; A. Hamzic; K. Bechgaard Magnetoresistance studies of HMTSF-TCNQ, Chem. Scr., Volume 17 (1981) no. 1-5, pp. 45-46

[164] R. J. Cooper; M. Weger; D. Jerome; D. Lefur; K. Bechgaard; A. N. Bloch; D. O. Cowan Semi-Metallic Behaviour of HMTSF-TCNQ at low temperatures under pressure, Solid State Comm., Volume 19 (1976), pp. 749-754 | DOI

[165] M. Weger A model for the electronic band structure of HMTSeF-TCNQ, Solid State Comm., Volume 19 (1976), pp. 1149-1155 | DOI

[166] J. R. Cooper; M. Weger; G. Delplanque; D. Jerome; K. Bechgaard The Hall effect in HMTSF-TCNQ, J. Physique Lett., Volume 37 (1976), pp. 349-353 | DOI

[167] M. Miljak; A. Andrieux; R. H. Friend; G. Malfait; D. Jerome; K. Bechgaard Observation of de Haas-Shubnikov oscillations in an organic metal, HMTSF-TCNQ, Solid State Comm., Volume 26 (1978), pp. 969-971 | DOI

[168] K. Murata; Y. Fukumoto; K. Yokogawa; R. Takaoka; W. Kang; J. S. Brooks; D. Graf; H. Yoshino; T. Sasaki; R. Kato Magnetic-field-induced phase transitions in the quasi-one-dimensional organic conductor HMTSF–TCNQ, Low Temp. Phys., Volume 40 (2014) no. 4, pp. 371-376 (a Memorial Issue for the 60th Year Anniversary of Lifschitz-Kosevich theory) | DOI

[169] A. G. Lebed The Physics of Organic Superconductors and Conductors, Springer: Berlin, Heidelberg, 2008

[170] K. Murata; Y. Fukumoto; K. Yokogawa et al. Magnetic-Field-Induced Phase Transition and a Possible Quantum Hall Effect in the Quasi-One-Dimensional CDW Organic Conductor HMTSF-TCNQ, J. Mod. Phys., Volume 5 (2014), 46453 | DOI

[171] Y. Tomkiewicz; J. R. Andersen; A. R. Taranko Relative stability of donor and acceptor stacks against Peierls distortion in the tetrathia- and tetraselenafulvalene-tetracyanoquinodimethane family of organic metals, Phys. Rev. B, Volume 17 (1978), pp. 1579-1591 | DOI

[172] J.-P. Pouget Diffuse X-ray scattering studies of one-dimensional organic metals, Chem. Scr., Volume 55 (1981) no. 1-5, pp. 85-91

[173] A. Andrieux; P. M. Chaikin; C. Duroure; D. Jerome; C. Weyl; K. Bechgaard; J. R. Andersen Transport properties of the metallic state of TMTSF-DMTCNQ, J. Phys. I France, Volume 40 (1979), pp. 1199-1206 | DOI

[174] S. Bouffard; M. Ribault; D. Jerome; K. Bechgaard Shubnikov–de Haas oscillations in an organic conductor, tetramethyltetraselenafulvalene-2,5-dimethyl-7,7 ,8,8 tetracyanoquinodimethane TMTSF-DMTCNQ, J. Physique Lett., Volume 44 (1983), pp. 285-293 | DOI

[175] L. M. Roth; P. N. Argyres Magnetic Quantum Effects, Semiconductors and Semimetals. Vol. 1 (R. K. Willardson; A. C. Beer, eds.), Volume 1, Academic Press Inc.: New York and London, 1966, pp. 159-202

[176] U. Hardebusch et al. The magnetic susceptibility of TMTSF-DMTCNQ under pressure, Solid State Comm., Volume 32 (1979), pp. 1151-1154 | DOI

[177] H. J. Schulz; D. Jerome; A. Mazaud; M. Ribault; K. Bechgaard Possibility of superconducting precursor effects in quasi-one-dimensional organic conductors : theory and experiments, J. Phys. France, Volume 42 (1981), pp. 991-1002 | DOI

[178] J. Friedel; D. Jerome Organic superconductors: the (TMTSF) 2 X family, Contemp. Phys., Volume 23 (1982) no. 6, pp. 583-624 | DOI

[179] J. L. Galigné; B. Liautard; S. Peytavin; G. Brun; J.-M. Fabre; E. Torreilles; L. Giral Étude structurale du bromure de tétraméthyltétrathiafulvalène (TMTTF) 2 Br, Acta Cryst. B, Volume 34 (1978), pp. 620-624 | DOI

[180] A. P. Drozdov; M. I. Eremets; I. A. Troyan; V. Ksenofontov; S. I. Shylin Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system, Nature, Volume 525 (2015), pp. 73-76 | DOI

[181] D. Jerome Organic Superconductivity: A Mouse may be of Service to a Lion, Superconductivity in New Materials (Z. Fisk; H. R. Ott, eds.) (Contemporary Concepts of Condensed Matter Science), Volume 4, Elsevier, 2011, pp. 149-216 | DOI

[182] J. R. Andersen; K. Bechgaard; C. S. Jacobsen; G. Rindorf; H. Soling; N. Thorup The Crystal and Molecular Structure of the Organic Conductor 2,3,6,7-Tetramethyl 1,4,5,8-tetraselenafulvalenium 2,5- Dimethyl- 7,7,8,8-tetracyano-p-quinodimethanide (TMTSF-DMTCNQ), Acta Cryst. B., Volume 34 (1978), pp. 1901-1905 | DOI

[183] A. Andrieux; C. Duroure; D. Jerome; K. Bechgaard The metallic state of the organic conductor TMTSF-DMTCNQ at low temperature under pressure, J. Physique Lett., Volume 40 (1979), pp. 381-383 | DOI

[184] I. F. Schegolev; R. B. Lubovskii Properties of the quasi-one-dimensional organic metal (TSeT) 2 Cl, Quasi One-Dimensional Conductors I, Volume 95, Springer-Verlag, 1979, p. 39

[185] V. N. Laukhin; I. F. Schegolev Study of phase transitions in (TSeT) 2 Cl under pressure at low temperatures, Sov. Phys. JETP, Volume 47 (1978) no. 6, pp. 1170-1173

[186] K. Bechgaard; J. R. Andersen Molecular Properties of the Molecules used in Conducting Organic Solids, The Physics and Chemistry of Low Dimensional Solids (L. Alcácer, ed.), Springer Netherlands: Dordrecht, 1980, pp. 247-263 | DOI

[187] D. Jerome; A. Mazaud; M. Ribault; K. Bechgaard Superconductivity in a synthetic organic conductor (TMTSF) 2 PF 6 , J. Physique Lett., Volume 41 (1980), pp. 95-98 | DOI

[188] D. Jerome; A. Mazaud; M. Ribault; K. Bechgaard Supraconductibilité dans un conducteur synthétique organique (TMTSF) 2 PF 6 , C. R. Hebd. Seances Acad. Sci. B, Volume 290 (1980) no. 2, pp. 27-30 (online at https://gallica.bnf.fr/ark:/12148/bpt6k54905962/f103.item.)

[189] J.-P. Pouget; S. Ravy X-ray evidence of charge density wave modulations in the magnetic phases of (TMTSF) 2 PF 6 and (TMTTF) 2 Br, Synth. Met., Volume 85 (1997), pp. 1523-1528 | DOI

[190] M. Ribault; G. Benedek; D. Jerome; K. Bechgaard Diamagnetic AC susceptibility in the quasi-one dimensional organic conductor : (TMTSF) 2 PF 6 , J. Physique Lett. Paris, Volume 41 (1980), pp. 397-399 (https://hal.archives-ouvertes.fr/jpa-00231806) | DOI

[191] K. Andres; F. Wudl; D. B. McWhan; G. A. Thomas; D. Nalewajek; A. L. Stevens Observation of the Meissener effect in an Organic Superconductor, Phys. Rev. Lett., Volume 45 (1980), pp. 1449-1452 | DOI

[192] J. C. Scott; H. J. Pedersen; K. Bechgaard Magnetic properties of the organic conductor (TMTSF) 2 PF 6 : a new phase transition, Phys. Rev. Lett., Volume 45 (1980), pp. 2125-2128 | DOI

[193] W. M. Walsh; F. Wudl; G. A. Thomas; D. Nalewajek; J. J. Hauser; P. A. Lee; T. Poehler Restoration of Metallic Behavior in organic Conductors by Small Electric Fields, Phys. Rev. Lett., Volume 45 (1980), pp. 829-832 | DOI

[194] A. Andrieux; D. Jerome; K. Bechgaard Spin-density wave ground state in the one-dimensional conductor (TMTSF) 2 PF 6 : microscopic evidence from 77 Se and 1 H NMR experiments, J. Physique Lett., Volume 42 (1981), pp. 87-90 | DOI

[195] K. Mortensen; Y. Tomkiewicz; T. D. Schultz; E. M. Engler Antiferromagnetic Ordering in the Organic Conductor his-Tetramethyltetraselenafulvalene-Hexafluorophosphate (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 46 (1981) no. 18, p. 1234--1237 | DOI

[196] J. C. Slater Magnetic Effects and the Hartree–Fock Equation, Phys. Rev., Volume 82 (1951), pp. 538-541 | DOI

[197] W. M. Lomer Electronic Structure of Chromium Group Metals, Proc. Phys. Soc.A, Volume 80 (1962), p. 489 | DOI

[198] A. W. Overhauser Spin Density Waves in an Electron Gas, Phys. Rev., Volume 128 (1962), pp. 1437-1452 | DOI | Zbl

[199] R. H. Friend; D. Jerome Periodic lattice distortions and charge density waves in one-and two-dimensional metals, J. Phys. C: Solid State Phys., Volume 12 (1979), p. 1441 | DOI

[200] P. Molinié; D. Jerome; A. J. Grant Pressure enhanced superconductivity and superlattice structures in transition metal dichalcogenide layer crystals, Phil. Mag, Volume 30 (1974), pp. 1091-1103 | DOI

[201] J. A. Wilson; F. J. Di Salvo; S. Mahajan Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides, Adv. Phys., Volume 24 (1975), pp. 117-201 | DOI

[202] J. Friedel On the pressure Dependence of Superconductivity in transition metal Dichalcogenide layer Crystals, J. Phys. Lett., Volume 36 (1975), pp. 279-280 | DOI

[203] R. L. Greene; E. M. Engler Pressure dependence of superconductivity in a organic superconductor (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 45 (1980), pp. 1587-1590 | DOI

[204] D. Jerome The physics of organic superconductors, Science, Volume 252 (1991), pp. 1509-1514 | DOI

[205] H. J. Schulz; D. Jerome; M. Ribault; A. Mazaud; K. Bechgaard Pressure dependence of the organic superconductivity in (TMTSF) 2 PF 6 , J. Physique. Lett, Volume 42 (1981), pp. 51-54 | DOI

[206] R. Brusetti; M. Ribault; D. Jerome Insulating, conducting and superconducting states of (TMTSF)2AsF6 under pressure and magnetic field, J. Phys. I France, Volume 43 (1982), pp. 801-808 | DOI

[207] D. Jerome Organic Superconductors: a survey of low dimensional phenomena, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 511-538 | DOI

[208] D. Jaccard; H. Wilhelm; D. Jerome; J. Moser; C. Carcel; J.-M. Fabre From spin-Peierls to superconductivity: (TMTTF) 2 PF 6 under high pressure, J. Phys. Cond. Matter, Volume 13 (2001), L89 | DOI

[209] M. Itoi; M. Kano; N. Kurita; M. Hedo; Y. Uwatoko; T. Nakamura Pressure-Induced Superconductivity in the Quasi-One-Dimensional Organic Conductor (TMTTF) 2 AsF 6 , J. Phys. Soc. Jpn., Volume 76 (2007) no. 5, 053703 | DOI

[210] M. Itoi; C. Araki; M. Hedo; Y. Uwatoko; T. Nakamura Anomalously Wide Superconducting Phase of One-Dimensional Organic Conductor (TMTTF) 2 SbF 6 , J. Phys. Soc. Jpn., Volume 77 (2008) no. 2, 023701 | DOI

[211] S. S. P. Parkin; M. Ribault; D. Jerome; K. Bechgaard Superconductivity in the family of organic salts based on the tetramethyltetraselenafulvalene (TMTSF) molecule: (TMTSF) 2 X(X=ClO 4 ,PF 6 ,AsF 6 ,SbF 6 ,TaF 6 ), J. Phys. C: Solid State Phys., Volume 14 (1981), p. 5305 | DOI

[212] S. S. P. Parkin; F. Creuzet; M. Ribault; D. Jérome; K. Bechgaard; J.-M. Fabre Superconductivity in the Organic Charge Transfer Salts: (TMTTF) 2 X and (TMTSF) 2 X, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 605-615 | DOI

[213] L. Balicas; K. Behnia; W. Kang; E. Canadell; P.-Senzier Auban; D. Jerome; M. Ribault; J.-M. Fabre Superconductivity and magnetic field induced spin density waves in the (TMTTF) 2 X family, J. Phys. I France, Volume 4 (1994), pp. 1539-1549 | DOI

[214] S. Tomić; D. Jerome A hidden low-temperature phase in the organic conductor (TMTSF) 2 ReO 4 , J. Phys.: Condens. Matter, Volume 1 (1989), p. 4451 | DOI

[215] H. Wilhelm et al. The case for universality of the phase diagram of the Fabre and Bechgaard salts, Eur. Phys. Jour. B, Volume 21 (2001), pp. 175-183 | DOI

[216] T. Adachi; E. Ojima; K. Kato; H. Kobayashi Superconducting Transition of (TMTTF) 2 PF 6 above 50 kbar, J. Am. Chem. Soc., Volume 122 (2000), pp. 3238-3239 | DOI

[217] V. J. Emery Theory of the One-Dimensional Electron Gas, Highly Conducting One-Dimensional Solids (J. T. Devreese; R. E. Evrard; V. E. van Doren, eds.) (Physics of Solids and Liquids), Plenum Press, New York, 1979, pp. 247-303 | DOI

[218] J. Solyom The Fermi Gas model of one-dimensional conductors, Adv. Phys., Volume 28 (1979), pp. 201-303 | DOI

[219] H. J. Schulz Fermi liquids and non-Fermi liquids, Proceedings of Les Houches Summer School LXI (E. Akkermans; G. Montambaux; J. Pichard; J. Zinn-Justin, eds.), Elsevier, Amsterdam, 1995, p. 533 | DOI

[220] J. Voit One-dimensional Fermi liquids, Rep. Prog. Phys., Volume 58 (1995), p. 977 | DOI

[221] T. Giamarchi Quantum Physics in One-Dimension, Clarendon Press, Oxford, 2003

[222] V. J. Emery; R. Bruinsma; S. Barišić Electron-Electron Umklapp Scattering in Organic Superconductors, Phys. Rev. Lett., Volume 48 (1982), pp. 1039-1043 | DOI

[223] S. Barišić; S. Brazovskii Recent Developments in Condensed Matter Physics (J. T. Devreese, ed.), 1, Plenum Press: New York, 1981

[224] K. Penc; F. Mila Charge gap in the one-dimensional dimerized Hubbard model at quarter-filling, Phys. Rev. B, Volume 50 (1994), pp. 11429-11445 | DOI

[225] P. M. Grant Band-structure parameters of a series of tetramethyltetraselenafulvalene (TMTSF) 2 X compounds, Phys. Rev. B, Volume 26 (1982), pp. 6888-6895 | DOI

[226] C. Coulon; P. Delhaes; S. Flandrois; R. Lagnier; E. Bonjour; J.-M. Fabre Effect of doping (TMTSF) 2 ClO 4 with TMTTF I. Ambient pressure results: a competition between the different possible ground states, J. Phys. I France, Volume 43 (1982), pp. 1721-1729 | DOI

[227] L. G. Caron; C. Bourbonnais Importance of one-dimensional correlations in the phase diagram of the (TMTTF) 2 X-(TMTSF) 2 X salts, Physica B+C, Volume 143 (1986), pp. 453-455 | DOI

[228] S. Brazovskii; Y. Yakovenko On the theory of organic superconducting materials, Sov. Phys. JETP, Volume 62 (1985), pp. 1340-1352

[229] T. Giamarchi Umklapp process and resistivity in one-dimensional fermion systems, Phys. Rev. B, Volume 44 (1991), pp. 2905-2913 | DOI

[230] M. Shahbazi; C. Bourbonnais Electrical transport near quantum criticality in low dimensional organic superconductors, Phys. Rev. B, Volume 92 (2015), 195141 | DOI

[231] T. Giamarchi Mott transition in one dimension, Phys. B: Condens. Matter, Volume 230-232 (1997), pp. 975-980 | DOI

[232] F. Mila; X. Zotos Phase Diagram of the One-Dimensional Extended Hubbard Model at Quarter-Filling, Europhys. Lett., Volume 24 (1993), p. 133 | DOI

[233] M. Tsuchiizu; H. Yoshika; Y. Suzumura Crossover from Quarter-Filling to Half-Filling in a One-Dimensional Electron System with a Dimerized and Quarter-Filled Band, J. Phys. Soc. Jpn., Volume 70 (2001), p. 1460--1463 | DOI

[234] T. Giamarchi Theoretical Framework for Quasi-One Dimensional Systems, Chem. Rev., Volume 104 (2004), pp. 5037-5056 | DOI

[235] A. S. Rüetschi; D. Jaccard High pressure study of the organic compound (TMTTF) 2 BF 4 , Eur. Phys. J. B, Volume 67 (2009), pp. 43-49 | DOI

[236] C. Bourbonnais; D. Jerome Electronic Confinement in Organic Metals, Science, Volume 281 (1998), pp. 1155-1156 | DOI

[237] L. Ducasse; A. Abderraba; J. Hoarau; M. Pesquer; B. Gallois; J. Gaultier Temperature dependence of the transfer integrals in the (TMTSF) 2 X and (TMTTF) 2 X families, J. Phys. C: Solid State Phys., Volume 19 (1986), 3805 | DOI

[238] J.-M. Fabre Synthesis Strategies and Chemistry of Nonsymmetrically Substituted Tetrachalcogenafulvalenes, Chem. Rev., Volume 104 (2004), pp. 5133-5150 | DOI

[239] F. Creuzet; C. Bourbonnais; L. G. Caron; D. Jerome; K. Bechgaard A 13 C NMR in study of the interplay between the Spin–Peierls and antiferromagnetic ground states of (TMTTF) 2 PF 6 under pressure, Synth. Met., Volume 19 (1987), pp. 289-294 | DOI

[240] C. Bourbonnais; P. Wzietek; F. Creuzet; D. Jerome; K. Bechgaard; P. Batail Scaling Relation between Nuclear Relaxation and Magnetic Susceptibility in Organic Conductors: Evidence for 1D Paramagnon Effects, Phys. Rev. Lett., Volume 62 (1989), p. 1532 | DOI

[241] P. Wzietek; F. Creuzet; C. Bourbonnais; D. Jerome; K. Bechgaard; P. Batail Nuclear relaxation and electronic correlations in quasi-one-dimensional organic conductors. II. Experiments, J. Phys. I France, Volume 3 (1993), pp. 171-201 | DOI

[242] J.-P. Pouget; R. Moret; R. Comès; K. Bechgaard; J.-M. Fabre; L. Giral X-Ray Diffuse Scattering Study of Some (TMTSF) 2 X and (TMTTF) 2 XSalts, Mol. Cryst. Liq. Cryst., Volume 79 (1982), p. 129 | DOI

[243] P. Auban-Senzier; D. Jerome; C. Carcel; J.-M. Fabre Longitudinal and transverse transport of the quasi-one dimensional organic conductor (TMTTF) 2 PF 6 studied under high pressure, J. Phy. IV France, Volume 114 (2004), pp. 41-44 | DOI

[244] C. Bourbonnais; L. G. Caron New Mechanisms for Phase Transitions in Quasi-One-Dimensional Conductors, Europhys. Lett., Volume 5 (1988), p. 209 | DOI

[245] P. M. Grant Electronic Structure of the 2:1 Charge Transfer Salts of TMTCF, J. Phys. Colloques, Volume 44 (1983), pp. 847-857 | DOI

[246] D. Jerome Organic Conductors: From Charge Density Wave TTF-TCNQ to Superconducting (TMTSF) 2 PF 6 , Chem. Rev., Volume 104 (2004), pp. 5565-5592 | DOI

[247] A. Schwartz; M. Dressel; G. Grüner; V. Vescoli; L. Degiorgi; T. Giamarchi On-chain electrodynamics of metallic (TM) 2 X salts: Observation of Tomonaga–Luttinger liquid response, Phys. Rev. B, Volume 58 (1998), pp. 1261-1271 | DOI

[248] V. Vescoli; L. Degiorgi; W. Henderson; G. Grüner; K. P. Starkey; L. K. Montgomery Dimensionality-Driven Insulator-to-Metal Transition in the Bechgaard salts, Science, Volume 281 (1998), pp. 1181-1184 | DOI

[249] L. Degiorgi; D. Jerome Transport and Optics in Quasi-One-Dimensional Organic Conductors, J. Phys. Soc. Jpn., Volume 75 (2006), 051004 | DOI

[250] S. Biermann; A. Georges; A. Lichtenstein; T. Giamarchi Deconfinement Transition and Luttinger to Fermi Liquid Crossover in Quasi-One-Dimensional Systems, Phys. Rev. Lett., Volume 87 (2001), 276405 | DOI

[251] J. Moser; M. Gabay; P.-Senzier Auban; D. Jerome; K. Bechgaard; J.-M. Fabre Transverse transport in (TM) 2 X organic conductors: possible evidence for a Luttinger liquid, Eur. Phys. Jour. B, Volume 1 (1998), pp. 39-46 | DOI

[252] F. Creuzet; C. Bourbonnais; L. G. Caron; D. Jerome; A. Moradpour 77 Se NMR Spin-Lattice relaxation rate properties in the (TMTSF) 2 X series under pressure: cooperative phenomena and SDW Transition, Synth. Met., Volume 19 (1987), pp. 277-282 | DOI

[253] B. Gallois; J. Gaultier; T. Lamcharfi; F. Bechtel; A. Filhol; L. Ducasse; M. Abderrabba Cristallographic structures of (TMTSF) 2 PF 6 under constraints: evidence of a change in the electronic structure, Synth. Met., Volume 19 (1987), pp. 321-326 | DOI

[254] C. Bourbonnais; D. Jerome The normal phase of quasi-one-dimensional organic superconductors, Advances in Synthetic Metals: Twenty Years of Progress in Science and Technology (P. Bernier; S. Lefrant; G. Bidan, eds.), Elsevier, 1999, pp. 206-261

[255] P. Auban-Senzier; D. Jerome; J. Moser Non Fermi-Liquid features in (TM) 2 X 1-D Conductors from transport properties, Proceedings of the Physical Phenomena at High Magnetic Fields-III (Z. Fisk; L. Gorkov; R. Schrieffer, eds.), World Scientific: Singapore, 1999, p. 211-+

[256] D. S. Chow; F. Zamborsky; B. Alavi; D. J. Tantillo; A. Baur; C. A. Merlić; S. E. Brown Charge Ordering in the TMTTF Family of Molecular Conductors, Phys. Rev. Lett., Volume 85 (2000), pp. 1698-1701 | DOI

[257] F. Nad; P. Monceau; C. Carcel; J.-M. Fabre Dielectric response of the charge-induced correlated state in the quasi-one-dimensional conductor, Phys. Rev. B, Volume 62 (2000), pp. 1753-1756 | DOI

[258] P. Monceau; F. Nad; S. Brazovskii Ferroelectric Mott–Hubbard Phase of Organic (TMTTF) 2 X Conductors, Phys. Rev. Lett., Volume 86 (2001), pp. 4080-4083 | DOI

[259] C. Bourbonnais; F. Creuzet; D. Jerome; K. Bechgaard; A. Moradpour Cooperative phenomena in (TMTSF) 2 ClO 4 : an NMR evidence, J. Physique Lett., Volume 45 (1984), pp. 755-765 | DOI

[260] S. Tomić; J. R. Cooper; W. Kang; D. Jerome; K. Maki The influence of chemical impurities and X-ray induced defects on the single-particle and spin-density wave conductivity in the Bechgaard salts, J. Phys. I France, Volume 1 (1991), pp. 1603-1625 | DOI

[261] N. Cao; T. Timusk; K. Bechgaard Unconventional Electrodynamic Response of the Quasi One Dimensional Organic Conductor (TMTSF) 2 ClO 4 , J. Phys. I France, Volume 6 (1996), pp. 1719-1726 | DOI

[262] W. Henderson; V. Vescoli; P. Tran; L. Degiorgi; G. Grüner Anisotropic electrodynamics of low dimensional metals: Optical studies of (TMTSF) 2 ClO 4 , Eur. Phys. J. B, Volume 11 (1999), pp. 365-368 | DOI

[263] D. G. Clarke; S. P. Strong; P. W. Anderson Conductivity between Luttinger Liquids in the Confinement Regime and c-Axis Conductivity in the Cuprate Superconductors, Phys. Rev. Lett., Volume 74 (1995), pp. 4499-4502 | DOI

[264] M. Dressel; A. Schwartz; G. Grüner; Giorgi; L. De Deviations from Drude Response in Low-Dimensional Metals: Electrodynamics of the Metallic State of (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 77 (1996), pp. 398-401 | DOI

[265] C. S. Jacobsen; D. B. Tanner; K. Bechgaard Dimensionality Crossover in the Organic Superconductor Tetramethyltetraselenafulvalene Hexafluorophosphate (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 46 (1981), pp. 1142-1145 | DOI

[266] M. Dressel Electrodynamics of Bechgaard Salts: Optical Properties of One-Dimensional Metals, ISRN Condensed Matter Physics, Volume 2012 (2012), 732973 | DOI

[267] A. Georges; T. Giamarchi; N. Sandler Interchain conductivity of coupled Luttinger liquids and organic conductors, Phys. Rev. B, Volume 61 (2000), pp. 16393-16396 | DOI

[268] K. Heuzé; M. Fourmigué; P. Batail; C. Coulon; R. Clérac; E. Canadell; P. Auban-Senzier; R. Ravy; D. Jerome A genuine quarter-filled band Mott insulator, (EDT-TTF-CONMe 2 ) 2 AsF 6 : where the chemistry and Physics of weak intermolecular interactions act in unison, Adv. Mater., Volume 15 (2003), pp. 1251-1254 | DOI

[269] D. S. Chow; P. Wzietek; D. Fogliatti; B. Alavi; D. J. Tantillo; C. A. Merlic; S. E. Brown Singular Behavior in the Pressure-Tuned Competition between Spin–Peierls and Antiferromagnetic Ground States of (TMTTF) 2 PF 6 , Phys. Rev. Lett., Volume 81 (1998), pp. 3984-3987 | DOI

[270] L. Zorina; S. Simonov; C. Mézière; E. Canadell; S. Suh; S. E. Brown; P. Foury-Leylekian; P. Fertey; J.-P. Pouget; P. Batail Charge ordering, symmetry and electronic structure issues and Wigner crystal structure of the quarter-filled band Mott insulators and high pressure metals (EDT-TTF-CONMe 2 ) 2 X,X=Br and AsF 6 - , Journal of Materials Chemistry, Volume 19 (2009), pp. 6980-6994 | DOI

[271] P. Auban-Senzier; C. R. Pasquier; D. Jerome; S. Suh; S. E. Brown; C. Meziere; P. Batail Phase Diagram of Quarter-Filled Band Organic Salts (EDT-TTF-CONMe 2 ) 2 X, X=AsF 6 - and Br, Phys. Rev. Lett., Volume 102 (2009), 255001 | DOI

[272] K. Bechgaard; M. Carneiro; M. Olsen; F. B. Rasmussen; C. S. Jacobsen Zero-Pressure Organic Superconductor (TMTSF) 2 ClO 4 , Phys. Rev. Lett., Volume 46 (1981), pp. 852-855 | DOI

[273] K. Bechgaard; K. Carneiro; M. Olsen; F. B. Rasmussen; M. Olsen Superconductivity in an Organic Solid. Synthesis, Structure, and Conductivity of Bis(tetramethyltetraselenafulva1enium) Perchlorate, (TMTSF) 2 ClO 4 , J. Am. Chem. Soc, Volume 103 (1981), pp. 2440-2442 | DOI

[274] N. Thorup; G. Rindorf; H. Soling; K. Bechgaard The Structure of (TMTSF) 2 PF 6 the First Superconducting Organic Solid, Acta Cryst. B, Volume 37 (1981), pp. 1236-1240 | DOI

[275] H. Kowada; R. Kondo; S. Kagoshima Development of Uniaxial Elongation Method and Its Application to Low Dimensional Conductors, J. Phys. Soc. Jpn., Volume 76 (2007), 114710 | DOI

[276] L. Ducasse; M. Abderrabba; B. Gallois Temperature dependence of the Fermi surface topography in the (TMTSF) 2 X and (TMTTF) 2 X families, J. Phys. C: Solid State Phys., Volume 18 (1985), L947 | DOI

[277] R. Bruinsma; V. J. Emery Theory of Anion ordering in TMTSF Compounds, J. Phys. Colloques, Volume 44 (1983) no. C3, pp. 1115-1120 | DOI

[278] V. J. Emery Some basic Questions in organic Superconductivity, J. Phys. Colloques, Volume 44 (1983), pp. 977-982 | DOI

[279] J.-P. Pouget; G. Shirane; K. Bechgaard; J.-M. Fabre X-ray evidence of a structural transition in (TMTSF) 2 ClO 4 pristine and slightly doped, Phys. Rev. B, Volume 27 (1983), pp. 5203-5206 | DOI

[280] T. Takahashi; K. Bechgaard; D. Jerome Observation of a magnetic state in the organic superconductor (TMTSF) 2 ClO 4 : influence of the cooling rate, J. Physique Lett., Volume 43 (1982), pp. 565-573 | DOI

[281] L. Pasteur Talk at the University of Lille, 1854 (https://innovationetserendipite.files.wordpress.com/2011/01/discours-de-louis-pasteur.pdf)

[282] R. Moret; S. Ravy; J.-P. Pouget; R. Comes; K. Bechgaard Anion-Ordering Phase Diagram of Di(tetramethyltetraselenafulvalenium) Perrhenate, (TMTSF) 2 ReO 4 , Phys. Rev. Lett., Volume 57 (1986), pp. 1915-1918 | DOI

[283] S. S. P. Parkin; D. Jerome; K. Bechgaard Pressure dependence of the metal-insulator and superconducting phase transitions in (TMTSF) 2 ReO 4 , Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 569-580 | DOI

[284] D. U. Gubser; W. W. Fuller; T. O. Poehler; D. O. Cowan; M. Lee; R. S. Potemberg; L. Y. Chiang; A. N. Bloch Magnetic susceptibility and resistive transitions of superconducting (TMTSF) 2 ClO 4 : critical fields, Phys.Rev.B, Volume 24 (1981), pp. 478-480 | DOI

[285] H. Schwenk; K. Andres; F. Wudl Resistivity of the organic superconductor (TMTSF) 2 ClO 4 in its relaxed, quenched, and intermediate state, Phys. Rev. B, Volume 29 (1984), pp. 500-502 | DOI

[286] D. U. Gubser; W. W. Fuller; T. O. Poehler; J. Stokes; D. O. Cowan; M. Lee; A. N. Bloch Resistive and Magnetic Susceptibility Transitions in Superconducting (TMTSF) 2 ClO 4 , Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 581-590 | DOI

[287] J. I. Oh; M. J. Naughton Magnetic Determination of Hc2 under Accurate Alignment in (TMTSF) 2 ClO 4 , Phys. Rev. Lett., Volume 92 (2004), 067001 | DOI

[288] P. Garoche; R. Brusetti; D. Jerome; K. Bechgaard Specific heat measurements of organic superconductivity in (TMTSF) 2 ClO 4 , J. Physique Lett., Volume 43 (1982), pp. 147-152 | DOI

[289] D. Mailly; M. Ribault; K. Bechgaard; J.-M. Fabre; L. Giral Anisotropy of the Meissner effect and the diamagnetic shielding in (TMTSF) 2 ClO 4 , J. Physique Lett., Volume 43 (1982), pp. 711-717 | DOI

[290] S. Yonezawa; Y. Maeno; K. Bechgaard; D. Jerome Nodal superconducting order parameter and thermodynamic phase diagram of (TMTSF) 2 ClO 4 , Phys. Rev. B, Volume 85 (2012), 140502R | DOI

[291] L. P. Gorkov; D. Jerome Back to the problem of the upper critical fields in organic superconductors, J. Physique Lett., Volume 46 (1985), pp. 643-646 | DOI

[292] S. Yonezawa; C. A. Marrache-Kikuchi; K. Bechgaard; D. Jerome Crossover from impurity-controlled to granular superconductivity in (TMTSF) 2 ClO 4 , Phys. Rev. B, Volume 97 (2018), 014521 | DOI

[293] T. Ishiguro; K. Yamaji; G. Saito Organic Superconductors, Springer Series in Solid-State Sciences, 88, Springer, Heidelberg, 1998 | DOI

[294] K. Murata; M. Tokumoto; H. Anzai; K. Kajimura; T. Ishiguro Upper critical field of the anisotropic organic superconductors, (TMTSF) 2 ClO 4 , Jpn. J. Appl. Phys., Volume 26 (1987) no. S3-2, pp. 1367-1368 | DOI

[295] I. J. Lee; M. J. Naughton; G. M. Danner; P. M. Chaikin Anisotropy of the Upper Critical Field in (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 78 (1997), pp. 3555-3558 | DOI

[296] I. J. Lee; P. M. Chaikin; M. J. Naughton Exceeding the Pauli paramagnetic limit in the critical field of (TMTSF) 2 PF 6 , Phys. Rev. B, Volume 62 (2000), p. R14669-R14672 | DOI

[297] I. J. Lee; A. P. Hope; M. J. Leone; M. J. Naughton Revisiting the Superconducting Phase Diagram of (TMTSF) 2 ClO 4 , Synthetic Metals, Volume 70 (1995), pp. 747-750 | DOI

[298] S. Yonezawa; S. Kusaba; Y. Maeno; P.-Senzier Auban; C. Pasquier; D. Jerome Magnetic-Field Variations of the Pair-Breaking Effects of Superconductivity in (TMTSF) 2 ClO 4 , J. Phys. Soc. Jpn., Volume 77 (2008), 054712 | DOI

[299] S. Yonezawa; S. Kusaba; Y. Maeno; P.-Senzier Auban; C. Pasquier; K. Bechgaard; D. Jerome Anomalous In-Plane Anisotropy of the Onset of Superconductivity in (TMTSF) 2 ClO 4 , Phys. Rev. Lett., Volume 100 (2008), 117002 | DOI

[300] A. M. Clogston Upper limit for the critical field in hard superconductors, Phys. Rev. Lett., Volume 9 (1962), pp. 266-267 | DOI

[301] P. J. Hirschfeld; P. Wolfe; D. Einzel Consequences of resonant impurity scattering in anisotropic superconductors: Thermal and spin relaxation properties, Phys. Rev. B, Volume 37 (1988), pp. 83-97 | DOI

[302] D. Jerome; S. Yonezawa Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts, C. R. Physique, Volume 17 (2016), pp. 357-375 | DOI

[303] J. Shinagawa; Y. Kurosaki; F. Zhang; C. Parker; S. E. Brown; D. Jerome Superconducting State of the Organic Conductor (TMTSF) 2 ClO 4 , Phys. Rev. Lett., Volume 98 (2007), 147002 | DOI

[304] D. Aoki; K. Ishida; J. Flouquet Review of U-based ferromagnetic superconductors: comparaison betwen UGe 2 , URhGe and UCoGe, J. Phys. Soc. Jpn., Volume 88 (2018), 022001 | DOI

[305] M. Takigawa; H. Yasuoka; G. Saito Proton spin lattice relaxation in the superconducting state of (TMTSF) 2 ClO 4 , J. Phys. Soc. Jpn., Volume 56 (1987), pp. 873-876 | DOI

[306] Y. Hasegawa; H. Fukuyama NMR rexation time of anisotropic superconding state in quasi-one dimensional systems, J. Phys. Soc. Jpn., Volume 56 (1987), pp. 877-880 | DOI

[307] I. J. Lee; M. J. Naughton; P. M. Chaikin Triplet Superconductivity in an Organic Superconductor Probed by NMR Knight Shift, Phys. Rev. Lett., Volume 88 (2002), 017004 | DOI

[308] P. Fulde; R. A. Ferrell Superconductivity in a Strong Spin-Exchange Field, Phys. Rev., Volume 135 (1964), p. A550-A563 | DOI

[309] A. I. Larkin; Y. N. Ovchinnikov Nonuniform State of Superconductors, Sov. Phys. JETP, Volume 20 (1965) no. 3, p. 762-+

[310] S. P. Strong; D. G. Clarke; P. W. Anderson Magnetic Field Induced Confinement in Strongly Correlated Anisotropic Materials, Phys. Rev. Lett., Volume 73 (1994), pp. 1007-1010 | DOI

[311] N. Joo; P.-Senzier Auban; C. R. Pasquier; S. Yonezawa; R. Higashinaka; Y. Maeno; S. Haddad; S. Charfi-Kaddour; M. Héritier; D. Jerome Field-induced confinement in (TMTSF) 2 ClO 4 under accurately aligned magnetic fields, Eur. Phys. B, Volume 52 (2006), pp. 337-343 | DOI

[312] A. G. Lebed Reversible nature of the orbital mechanism for the suppression of superconductivity, JETP Lett., Volume 44 (1986) no. 2, pp. 114-117

[313] Y. Fuseya; C. Bourbonnais; K. Miyake On the Origin of the Anomalous Upper Critical Field in Quasi-One-Dimensional Superconductors, Eur. Phys. Lett., Volume 100 (2012), 57008 | DOI

[314] N. Miyawaki; S. Shimahara Dimensional Crossover of the Fulde–Ferrell–Larkin–Ovchinnikov State in Strongly Pauli-Limited Quasi-One-Dimensional Superconductor, J. Phys. Soc. Jpn., Volume 83 (2014), 024703 | DOI

[315] Y. Matsuda; H. Shimahara Fulde–Ferrell–Larkin–Ovchinnikov State in Heavy Fermion Superconductors, J. Phys. Soc. Jpn., Volume 76 (2007), 051005 | DOI

[316] H. Mayaffre; P. Auban-Senzier; M. Nardone; D. Jerome; D. Poilblanc; C. Bourbonnais; U. Ammerrahl; G. Dhalenne; A. Revcolevschi Absence of a Spin Gap in the Superconducting Ladder Compound Sr 2 Ca 12 Cu 24 O 41 , Science, Volume 279 (1998), pp. 345-348 | DOI

[317] D. Braithwaite et al. Upper critical field of the spin ladder system Sr 2 Ca 12 Cu 24 O 41 , Solid State Comm., Volume 114 (2000), pp. 533-536 | DOI

[318] T. Nakanishi; N. Motoyama; H. Mitamura; N. Takeshita; H. Takahashi; H. Eisaki; S. Uchida; N. Môri Magnetic field effect on the pressure-induced superconducting state in the hole-doped two-leg ladder compound Sr 2 Ca 12 Cu 24 O 41 , Phys. Rev. B, Volume 72 (2005), 054520 | DOI

[319] G. Roux; S. R. White; S. Capponi; D. Poilblanc Zeeman Effect in Superconducting Two-Leg Ladders: Irrational Magnetization Plateaus and Exceeding the Pauli Limit, Phys. Rev. Lett., Volume 97 (2006), 087207 | DOI

[320] D. F. Agterberg; K. Yang The effect of impurities on Fulde–Ferrell–Larkin–Ovchinnikov superconductors, J. Phys.: Condens. Matter, Volume 13 (2001), pp. 9259-9270 | DOI

[321] M. Shahbazi; Y. Fuseya; H. Bakrim; A. Sedeki; C. Bourbonnais Superconducting and density-wave instabilities of low-dimensional conductors with a Zeeman coupling to a magnetic field, Phys. Rev. B, Volume 95 (2017) no. 16, 165111 | DOI

[322] P. W. Anderson Theory of dirty Superconductors, J. Phys. Chem. Solids, Volume 11 (1959), pp. 26-30 | DOI | Zbl

[323] A. A. Abrikosov; L. P. Gorkov Contribution to the theory of superconducting alloys with paramagnetic impurities, Sov. Phys. JETP, Volume 12 (1961) no. 6, pp. 1243-1253

[324] K. Maki; H. Won; S. Haas Quasiparticle spectrum of the hybrid s+g-wave superconductors YNi 2 B 2 C and LuNi 2 B 2 C, Phys. Rev. B, Volume 69 (2004), 012502 | DOI

[325] A. P. MacKenzie; Y. Maeno The superconductivity of Sr 2 RuO 4 and the physics of spin-triplet pairing, Reviews of Modern Physics, Volume 75 (2003), pp. 657-712 | DOI

[326] Y. Maeno; S. Kittaka; T. Nomura; S. Yonezawa; K. Ishida Evaluation of Spin-Triplet Superconductivity in Sr 2 RuO 4 , J. Phys. Soc. Jpn., Volume 81 (2012), 011009 | DOI

[327] S. Bouffard; M. Ribault; R. Brusetti; D. Jerome; K. Bechgaard Low-temperature metallic state and superconductivity in quasi-one-dimensional organic conductors: pressure and irradiation investigations, J. Phys. C: Solid State Phys., Volume 15 (1982), pp. 2951-2964 | DOI

[328] M. Y. Choi; P. M. Chaikin; S. Z. Huang; P. Haen; E. M. Engler; R. L. Greene Effect of radiation damage on the metal-insulator transition and low temperature transport in the (TMTSF) 2 PF 6 salt, Phys. Rev. B, Volume 25 (1982), pp. 6208-6217 | DOI

[329] A. A. Abrikosov Superconductivity in a quasi-one-dimensional metal with impurities, J. Low Temp. Phys., Volume 53 (1983), pp. 359-374 | DOI

[330] M. Miljak; B. Korin; J. R. Cooper; K. Holczer; A. Jánossy Low temperature magnetic susceptibility of quasi one-dimensional conductors, J. Physique, Volume 41 (1980), pp. 639-646 | DOI

[331] O. Traetteberg The spin density wave collective mode in (TMTSF) 2 AsF 6(1-x) SbF 6x , Ph. D. Thesis, Université Paris-Sud – Paris XI, Orsay (France) (1993)

[332] N. Joo; P. Auban-Senzier; C. Pasquier; D. Jerome; K. Bechgaard Impurity-controlled superconductivity spin density wave interplay in the organic superconductor: (TMTSF) 2 ClO 4 , Eur. Phys. Lett., Volume 72 (2005), pp. 645-651 | DOI

[333] N. Joo; P. Auban-Senzier; C. R. Pasquier; P. Monod; D. Jerome; K. Bechgaard Suppression of superconductivity by non-magnetic disorder in the organic superconductor (TMTSF) 2 (ClO 4 ) (1-x) (ReO 4 ) x , Eur. Phys. J. B, Volume 40 (2004), pp. 43-48 | DOI

[334] N. Doiron-Leyraud; P. Auban-Senzier; S. René de Cotret; C. Bourbonnais; D. Jerome; K. Bechgaard; L. Taillefer Linear-T scattering and pairing from antiferromagnetic fluctuations in the (TM) 2 X organic superconductors, Eur. Phys. Jour. B, Volume 78 (2010), pp. 23-36 | DOI

[335] P. Auban-Senzier; C. R. Pasquier; D. Jérome; S. Suh; S. E. Brown; C. Mézière; P. Batail Fluctuating spin density wave conduction in (TMTSF) 2 (ClO 4 ) (1-x) (ReO 4 ) x organic superconductors, Eur. Phys. Lett., Volume 94 (2011), 17002 | DOI

[336] Y. Sun; K. Maki Impurity effects in d-wave superconductors, Phys. Rev. B, Volume 51 (1995), pp. 6059-6063 | DOI

[337] N. Matsunaga et al. Anion disorder and two-dimensionality in the superconducting and SDW states of (TMTSF) 2 ClO 4 , J. Low Temp. Phys., Volume 117 (1999), pp. 1735-1739 | DOI

[338] S. Kagoshima; T. Yasunaga; T. Ishiguro; H. Anzai; G. Saito Quenching Effect on the Anion Ordering in the Organic Superconductor (TMTSF) 2 ClO 4 : An X-ray study, Solid State Comm., Volume 46 (1983), pp. 867-870 | DOI

[339] R. Moret; J.-P. Pouget; R. Comès; K. Bechgaard X-ray study of the anion ordering transition in (TMTSF) 2 ClO 4 : quenching and irradiation effects, J. Phys. I France, Volume 46 (1985), pp. 1521-1532 | DOI

[340] J.-P. Pouget; S. Kagoshima; T. Tamegai; Y. Nogami; K. Kubo; T. Nakajima; K. Bechgaard High resolution x-ray scattering study of the anion ordering phase transition of (TMTSF) 2 ClO 4 , J. Phys. Soc. Jpn., Volume 59 (1990) no. 6, pp. 2036-2053 | DOI

[341] P. G. De Gennes Superconductivity of metals and alloys, CRC Press: Boca Raton, 2019 | DOI

[342] G. Deutscher; O. Entin-Wohlman; S. Fishman; Y. Shapira Percolation description of granular superconductors, Phys. Rev. B, Volume 21 (1980), pp. 5041-5047 | DOI

[343] E. Puchkaryov; K. Maki Impurity scattering in d-wave superconductivity. Unitarity limit versus Born limit, Eur. Phys. J. B, Volume 4 (1998), pp. 191-194 | DOI

[344] Y. Suzumura; H. J. Schulz Thermodynamic properties of impure anisotropic quasi-one-dimensional superconductors, Phys. Rev. B, Volume 39 (1989), pp. 11398-11405 | DOI

[345] G. Preosti; H. Kim; P. Muskar Density of states in unconventional superconductors: Impurity-scattering effects, Phys. Rev. B, Volume 50 (1994), pp. 1259-1263 | DOI

[346] J. C. Nickel; R. Duprat; C. Bourbonnais; N. Dupuis Triplet Superconducting Pairing and Density-Wave Instabilities in Organic Conductors, Phys. Rev. Lett., Volume 95 (2005), 247001 | DOI

[347] T. Sakakibara; A. Yamada; J. Custers; K. Yano; T. Tayama; H. Aoki; K. Machida Nodal Structures of Heavy Fermion Superconductors Probed by the Specific-Heat Measurements in Magnetic Fields, J. Phys. Soc. Jpn., Volume 76 (2007), 051004, 247001 | DOI

[348] K. An; T. Sakakibara; R. Settai; Y. Onuki; M. Hiragi; M. Ichioka; K. Machida Sign Reversal of Field-Angle Resolved Heat Capacity Oscillations in a Heavy Fermion Superconductor CeCoIn 5 and d(x2-y2) Pairing Symmetry, Phys. Rev. Lett., Volume 104 (2010), 037002, 051004 | DOI

[349] K. Izawa; H. Yamaguchi; T. Sasaki; Y. Matsuda Superconducting Gap Structure of κ-(BEDT-TTF) 2 Cu(NCS) 2 Probed by Thermal Conductivity Tensor, Phys. Rev. Lett., Volume 88 (2002), 027002, 037002 | DOI

[350] K. Izawa; A. Shibata; Y. Matsuda; Y. Kato; H. Takeya; K. Hirata; C. J. van der Beek; M. Konczykowski Low Energy Quasiparticle Excitation in the Vortex State of Borocarbide Superconductor YNi 2 B 2 C, Phys. Rev. Lett., Volume 86 (2001), 027002, pp. 1327-1330 | DOI

[351] K. Deguchi; Z. Q. Mao; H. Yaguchi; Y. Maeno Gap structure of the spin-triplet superconductor Sr 2 RuO 4 determined from the field orientation dependence of the specific heat, Phys. Rev. Lett., Volume 92 (2004), 047002 | DOI

[352] G. E. Volovik Superconductivity with lines of gap nodes:density of states in the vortex, JETP Lett., Volume 58 (1993) no. 6, 047002, pp. 457-461

[353] G. E. Volovik Fermionic entropy of the vortex state in d-wave superconductors, JETP Lett., Volume 65 (1997), pp. 491-496 | DOI

[354] I. Vekhter; P. J. Hirschfeld; J. P. Carbotte; E. J. Nicol Anisotropic thermodynamics of d-wave superconductors in the vortex state, Phys. Rev. B, Volume 59 (1999), p. R9023-R9026 | DOI

[355] S. Yonezawa; Y. Maeno; D. Jerome Extended analysis of the field-angle-dependent heat capacity of (TMTSF) 2 ClO 4 toward identification of the superconducting gap structure, J. Phys. Conf. Ser., Volume 449 (2013), 012032 | DOI

[356] D. Le Pevelen; J. Gaultier; Y. Barrans; D. Chasseau; F. Castet; L. Ducasse Temperature and pressure dependencies of the crystal structure of the organic superconductor (TMTSF) 2 ClO 4 , Eur. Phys. J. B, Volume 19 (2001), 012032, pp. 363-373 | DOI

[357] Y. Nagai; H. Nakamura; M. Machida Superconducting Gap Function in an Organic Superconductor (TMTSF) 2 ClO 4 with Anion Ordering; First-principles Calculations and Quasi-classical Analyses for Angle-resolved Heat Capacity, Phys. Rev. B, Volume 83 (2011), 104523 | DOI

[358] F. Creuzet; C. Bourbonnais; D. Jerome; K. Bechgaard Cooperative phenommena in (TMTSF) 2 ClO 4 NMR relaxation, Mol. Cryst. Liq. Cryst., Volume 119 (1985), 104523, pp. 45-51 | DOI

[359] C. Bourbonnais; A. Sedeki Superconductivity and antiferromagnetism as interfering orders in organic conductors, Comptes Rendus Physique, Volume 12 (2011), pp. 532-541 | DOI

[360] W. Wu; P. M. Chaikin; W. Kang; J. Shinagawa; W. Yu; S. E. Brown 77 Se NMR probe of magnetic excitations of the magic angle effect in (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 94 (2005), 097004 | DOI

[361] S. E. Brown; P. M. Chaikin; M. J. Naughton La tour des sels de Bechgaard, The Physics of Organic Superconductors and Conductors (A. G. Lebed, ed.), Springer, Heidelberg, 2008, 097004, pp. 49-87 | DOI

[362] T. Moryia; K. Ueda Spin fluctuations and high temperature superconductivity, Adv. Phys., Volume 49 (2000), pp. 555-606 | DOI

[363] C. Bourbonnais; A. Sedeki Link between antiferromagnetism and superconductivity probed by nuclear spin relaxation in organic conductors, Phys. Rev. B, Volume 80 (2009), 085105 | DOI

[364] Y. Kimura; M. Misawa; A. Kawamoto Correlation between non-Fermi-liquid behavior and antiferromagnetic fluctuations in (TMTSF) 2 PF 6 observed using 13 C NMR spectroscopy, Phys. Rev. B, Volume 84 (2011), 045123, 085105 | DOI

[365] N. Doiron-Leyraud; P. Auban-Senzier; S. René de Cotret; C. Bourbonnais; D. Jerome; K. Bechgaard; L. Taillefer Correlation between linear resistivity and T c in the Bechgaard salts and the pnictide superconductor Ba(Fe 1-x Co x ) 2 As 2 , Phys. Rev. B, Volume 80 (2009), 214531, 045123 | DOI

[366] P. Auban-Senzier; D. Jérome; N. Doiron-Leyraud; S. René de Cotret; A. Sedeki; C. Bourbonnais; L. Taillefer; P. Alemany; E. Canadell; K. Bechgaard The metallic transport of (TM) 2 X organic conductors close to the superconducting phase, J. Phys.: Condens. Matter, Volume 23 (2011), 345702, 214531 | DOI

[367] L. G. Azlamazov; A. I. Larkin Effect of Fluctuations on the properties of a Superconductor above the critical Temperature, Sov. Phys. Solid State, Volume 10 (1968), 345702, pp. 875-898 | DOI

[368] P. A. Lee; T. M. Rice; P. W. Anderson Conductivity from charge or spin density waves, Solid State Comm., Volume 14 (1974), pp. 703-709 | DOI

[369] E. Barthel; G. Quirion; P. Wzietek; D. Jérome; J. B. Christensen; M. Jørgensen; K. Bechgaard NMR incommensurate and incommesurate spin density waves, Europhys. Lett, Volume 21 (1993), pp. 87-92 | DOI

[370] G. Grüner The dynamics of spin density waves, Rev. Mod. Phys., Volume 66 (1994), pp. 1-24 | DOI

[371] C. Bourbonnais Nuclear relaxation and electronic correlations in quasi-one dimensional organic conductors. I. Scaling theory, J. Phys. I France, Volume 3 (1993), pp. 143-169 | DOI

[372] L. Fang; H. Luo; P. Cheng; Z. Wang; Y. Jia; G. Mu; B. Shen; I. I. Mazin; L. Shan; C. Ren; H.-H. Wen Roles of multiband effects and electron hole asymmetry in the superconductivity and normal properties of Ba(Fe 1-x Co x ) 2 As 2 , Phys. Rev. B, Volume 80 (2009), 140508 | DOI

[373] K. Jin; N. P. Butch; K. Kirshenbaum; J. Paglione; R. L. Greene Link between spin fluctuations and electron pairing in copper oxide superconductors, Nature, Volume 476 (2011), 140508, pp. 73-75 | DOI

[374] J. C. Nickel; R. Duprat; C. Bourbonnais; N. Dupuis Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors, Phys. Rev. B, Volume 73 (2006), 165126 | DOI

[375] R. Duprat; C. Bourbonnais Interplay between spin-density-wave and superconducting states in quasi-one-dimensional conductors, Eur. Phys. J. B, Volume 21 (2001), 165126, pp. 219-228 | DOI

[376] V. J. Emery The Mechanisms of Organic Superconductivity, Synth. Met., Volume 13 (1986), p. 21 | DOI

[377] M. T. Béal-Monod; C. Bourbonnais; V. J. Emery Possible superconductivity in nearly antiferromagnetic itinerant fermion systems, Phys. Rev. B, Volume 34 (1986), pp. 7716-7720 | DOI

[378] D. J. Scalapino; E. Loh; J. E. Hirsch d-wave pairing near a spin-density-wave instability, Phys. Rev. B, Volume 34 (1986), pp. 8190-8192 | DOI

[379] A. Sedeki; D. Bergeron; C. Bourbonnais Interfering antiferromagnetism and superconductivity in quasi-one-dimensional organic conductors, Physica B, Volume 405 (2009), p. S89-S91 | DOI

[380] A. Sedeki; D. Bergeron; C. Bourbonnais Extended quantum criticality of low-dimensional superconductors near a spin-density-wave instability, Phys. Rev. B, Volume 85 (2012), 165129 | DOI

[381] H. Bakrim; C. Bourbonnais Role of electron-phonon interaction in a magnetically driven mechanism for superconductivity, Phys. Rev. B, Volume 90 (2014), 125119, 165129 | DOI

[382] T. Vuletić; P. Auban-Senzier; C. Pasquier; S. Tomic; D. Jerome; M. Héritier; K. Bechgaard Coexistence of superconductivity and spin density wave orderings in the organic superconductor (TMTSF) 2 PF 6 , Eur. Phys. J. B, Volume 25 (2002), 125119, pp. 319-331 | DOI

[383] I. J. Lee; P. M. Chaikin; M. J. Naughton Critical Field Enhancement near a Superconductor-Insulator Transition, Phys. Rev. Lett., Volume 88 (2002), 207002 | DOI

[384] T. Goko; A. A. Aczel; E. Baggio-Saitovitch; S. L. Bud’ko; P. C. Canfield; J. P. Carlo; G. F. Chen; Pengcheng Dai; A. C. Hamann; W. Z. Hu; H. Kageyama; G. M. Luke; J. L. Luo; B. Nachumi; N. Ni; D. Reznik; D. R. Sanchez-Candela; A. T. Savici; K. J. Sikes; N. L. Wang; C. R. Wiebe; T. J. Williams; T. Yamamoto; W. Yu; Y. J. Uemura Superconductivity coexisting with phase-separated static magnetic order in (Ba,K)Fe 2 As 2 , (Sr,Na)Fe 2 As 2 and CaFe 2 As 2 , Phys. Rev. B, Volume 80 (2009), 024508, 207002 | DOI

[385] Y. J. Uemura Muon spin relaxation studies of unconventional superconductors: first-order behavior and comparable spin-charge energy scales, Springer Series in Solid-State Sciences, 180, Springer (2015), 024508, pp. 237-267 | DOI

[386] M. Dressel; S. Tomic Molecular quantum materials: electronic phases and charge dynamics in two-dimensional organic solids, Adv. Phys., Volume 69 (2020), pp. 1-120 | DOI

[387] G. Saito; T. Enoki; K. Toriumi; H. Inokuchi Two-dimensionality and suppression of metal-semiconductor transition in a new organic metal with Alkylthio substituted TTF and perchlorate, Solid State Comm., Volume 42 (1982) no. 8, pp. 557-560 | DOI

[388] S. S. P. Parkin; E. M. Engler; R. R. Schumaker; R. Lagier; V. Y. Lee; J. C. Scott; R. L. Greene Superconductivity in a New Family of Organic Conductors, Phys. Rev. Lett., Volume 50 (1983) no. 4, pp. 270-273 | DOI

[389] V. N. Laukhin; E. E. Kostyuchenko; Yu. Sushko; I. F. Shchegolev; E. B. Yagubskii Effect of pressure on the superconductivity of β-(ET) 2 I 3 , JETP Lett., Volume 41 (1985) no. 2, pp. 81-84

[390] K. Murata; M. Tokumoto; H. Anzai; H. Bando; G. Saito; K. Kajimura; T. Ishiguro Pressure phase diagram of the organic superconductor β-(BEDT-TTF) 2 I 3 , J. Phys. Soc. Jpn., Volume 54 (1985), pp. 2084-2087 | DOI

[391] F. Creuzet; G. Creuzet; D. Jerome; D. Schweitzer; H. J. Keller Homogeneous superconducting state at 8.1 K under ambient pressure ion the organic conductor β-(BEDT-TTF) 2 I 3 , J. Physique Lett., Volume 46 (1988), pp. 1079-1085 | DOI

[392] E. Yagubskii; I. Shchegolev; S. Pesotskii; V. Laukhin; P. Kononovich; M. Kartsovnik; A. Zvarykina Superconducting Properties of the Orthorhombic Phase of Bis-(ethylenedithiolo)tetrathiofulvalene Triiodide, JETP Lett., Volume 39 (1984) no. 6, pp. 328-332

[393] W. Kang; G. Montambaux; J. R. Cooper; D. Jerome; P. Batail; C. Lenoir Observation of Giant Magnetoresistance Oscillations in the High-T c Phase of the Two-Dimensional Organic Conductor β-(BEDT-TTF) 2 I 3 , Phys. Rev. Lett., Volume 62 (1989), pp. 2559-2562 | DOI

[394] M. Kartsovnik; P. Kononovich; V. Laukhin; I. Shchegolev Anisotropy of Magnetoresistance and Shubnikov–De Haas oscillations in the Organic Metal Beta-(ET) 2 IBr 2 , JETP Lett., Volume 48 (1988) no. 9, pp. 541-544

[395] K. Yamaji On the angle dependence of the magnetoresistance in quasi-two-dimensional organic superconductors, J. Phys. Soc. Jpn., Volume 58 (1989), pp. 1520-1523 | DOI

[396] H. Urayama; H. Yamochi; G. Saito; K. Nozawa; T. Sugano; M. Kinoshita; S. Sato; K. Oshima; A. Kawamoto; J. Tanaka A New Ambient Pressure Organic Superconductor Based on BEDT-TTF with T c Higher than 10K (T c =10.4K), Chem. Lett., Volume 17 (1988), pp. 55-58 | DOI

[397] A. M. Kini; U. Geiser; H. H. Wang; K. D. Carlson; J. M. Williams; W. K. Kwok; K. G. Vandervoort; J. E. Thompson; D. L. Stupka A New Ambient-Pressure Organic Superconductor, κ-(ET) 2 Cu(N(CN) 2 )Br, with the Highest Transition Temperature Yet Observed (Inductive Onset T c =11.6 K, Resistive Onset=12. K, Inorg. Chem., Volume 29 (1990), pp. 2555-2557 | DOI

[398] J. M. Williams; A. M. Kini; H. H. Wang; K. D. Carlson; U. Geiser; L. K. Montgomery; G. J. Pyrka; D. M. Watkins; J. M. Kommers From Semiconductor-Semiconductor Transition (42 K) to the Highest-T c Organic Superconductor, κcl(T c =12.5K), Inorg. Chem., Volume 29 (1990), pp. 3272-3274 | DOI

[399] S. Lefebvre; P. Wzietek; S. E. Brown; C. Bourbonnais; D. Jerome; C. Mézière; M. Fourmigué; P. Batail Mott Transition, Antiferromagnetism, and Unconventional Superconductivity in Layered Organic Superconductors, Phys. Rev. Lett., Volume 85 (2000) no. 25, pp. 5420-5423 | DOI

[400] P. Limelette; P. Wzietek; S. Florens; A. Georges; T. A. Costi; P. Pasquier; D. Jerome; C. Mézière; P. Batail Mott Transition and Transport Crossovers in the Organic Compound κ-(ET) 2 Cu[N(CN) 2 ]Cl, Phys. Rev. Lett., Volume 91 (2003), 016401 | DOI

[401] A. Georges; G. Kotliar; W. Krauth; M. Rosenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), 016401, pp. 13-125 | DOI

[402] H. Mayaffre; P. Wzietek; D. Jerome; C. Lenoir; P. Batail Superconducting state of κ-(ET) 2 Cu(N(CN) 2 )Br studied by 13C NMR: Evidence for vortex-core-induced nuclear relaxation and unconventional pairing, Phys. Rev. Lett., Volume 75 (1995), pp. 4122-4125 | DOI

[403] K. Kanoda; K. Miyagawa; A. Kawamoto; Y. Nakazawa NMR relaxation rate in the superconducting state of the organic conductor NMR relaxation rate in the superconducting state of the organic conductor κ-(ET) 2 Cu(N(CN) 2 )Br, Phys. Rev. B, Volume 54 (1996), pp. 76-79 | DOI

[404] S. Yasin; M. Dumm; B. Salameh; P. Batail; C. Meźière; M. Dressel Transport studies at the Mott transition of the two-dimensional organic metal κ-(BEDT) 2 Cu(N(CN) 2 )Br x Cl 1-x , Eur. Phys. J. B, Volume 79 (2011), pp. 383-390 | DOI

[405] V. A. Bondarenko; R. A. Petrosov; M. A. Tanatar; V. S. Yefanov; N. D. Kushch Transport Properties of κ-(ET) 2 Cu(N(CN) 2 )Br x Cl 1-x (0x1) Organic Superconductors, Physica C Supercond., Volume 235 (1994), pp. 2467-2468 | DOI

[406] M. Tokumoto; H. Anzai; K. Kajimura; T. Ishiguro High T c superconducting states in organic metals β-(ET) 2 X, Jpn. J. Appl. Phys., Volume 26-3 (1987), pp. 1977-1982 | DOI

[407] D. Fournier; M. Poirier; M. Castonguay; M. Truong Mott Transition, Compressibility Divergence and the P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation, Phys. Rev. Lett., Volume 90 (2003), 127002 | DOI

[408] F. Kagawa; T. Itou; K. Miyagawa; K. Kanoda Transport criticality of the first-order Mott transition in the quasi-two-dimensional organic conductor κ-(ET) 2 Cu[N(CN) 2 ]Cl, Phys. Rev. B, Volume 69 (2004), 064511, 127002 | DOI

[409] H. Mayaffre; P. Wzietek; C. Lenoir; D. Jerome; P. Batail 13 C NMR Study of a Quasi-Two Dimensional Organic Superconductor κ-(ET) 2 Cu(N(CN) 2 )Br, Eur. Phys. Lett., Volume 28 (1994), 064511, pp. 205-210 | DOI

[410] A. L. Kerlin; H. Nagasawa; D. Jerome Metal-Insulator transition investigation in V 2 O 3 by nuclear magnetic resonance and relaxation, Solid State Comm., Volume 13 (1973), pp. 1125-1129 | DOI

[411] F. Kagawa; K. Miyagawa; K. Kanoda Unconventional critical behaviour in a quasi-twodimensional organic conductor, Nature, Volume 436 (2005), pp. 534-537 | DOI

[412] P. Limelette; A. Georges; D. Jerome; P. Wzietek; P. Metcalf; J. M. Honig Universality and Critical Behavior at the Mott Transition, Science, Volume 302 (2003), pp. 89-92 | DOI

[413] A. Kamawamoto et al. 13 C NMR study of layered organic superconductors based on BEDT-TTF molecules, Physical Review Letters, Volume 74 (1995), pp. 3455-3458 | DOI

[414] D. B. McWhan; J. P. Remeika Metal-Insulator Transition in (V 1-x Cr x ) 2 O 3 , Phys. Rev. B, Volume 2 (1970) no. 9, pp. 3734-3750 | DOI

[415] A. Jayaraman; D. B. McWhan; J. P. Remeika; P. D. Dernier Critical Behavior of the Mott Transition in Cr-Doped V 2 O 3 , Phys. Rev. B, Volume 2 (1970) no. 9, pp. 3751-3756 | DOI

[416] N. F. Mott The transition to the metallic state, Phil. Mag, Volume 6 (1961), pp. 287-309 | DOI

[417] N. F. Mott The Metal-non-Metal Transition, J. Phys. Colloques, Volume 32 (1971) no. C1, pp. 11-14 | DOI

[418] V. Jaccarino; M. Peter Ultra-High-Field Superconductivity, Phys. Rev. Lett., Volume 9 (1962), pp. 290-292 | DOI

[419] S. Uji; H. Shinagawa; C. Terakura; T. Terashima; T. Yakabe; Y. Terai; M. Tokumoto; A. Kobayashi; H. Tanaka; H. Kobayashi Magnetic-field-induced superconductivity in a two-dimensional organic conductor, Nature, Volume 410 (2001), pp. 908-910 | DOI

[420] L. Balicas; J. S. Brooks; K. Storr; S. Uji; M. Tokumoto; K. Kobayashi; A. Kobayashi; H. Tanaka; V. Barzykin; L. P. Gorkov Superconductivity in an Organic Insulator at Very High Magnetic Fields, Phys. Rev. Lett., Volume 87 (2001), 067002 | DOI

[421] T. Naito Modern History of Organic Conductors: An Overview, Crystals, Volume 11 (2021), 838, 067002 | DOI

[422] N. F. Mott Metal-Insulator Transitions, Taylor and Francis, London, 1974, 838

[423] L. Alcacer; A. H. Maki Electrically Conducting Metal Dithiolate-Perylene Complexes, J. Phys. Chem., Volume 78 (1974) no. 3, pp. 215-217 | DOI

[424] L. Alcacer et al. Synthesis, structure and preliminary results on electrical and magnetic properties of (Perylene) 2 [Pt(mnt) 2 ], Solid State Comm., Volume 35 (1980), pp. 945-949 | DOI

[425] D. Graf; J. S. Brooks; M. Almeida; J. C. Dias; S. Uji; T. Terashima; M. Kimata Evolution of superconductivity from a charge-density-wave ground state in pressurized (Per) 2 Au(mnt) 2 , Eur. Phys. Lett., Volume 85 (2009), 27009 | DOI

[426] G. Bonfait; E. B. Lopes; M. J. Matos; R. T. Henriques; M. Almeida Magnetic field dependence of the metal-insulator transition in (Per) 2 Pt(mnt) 2 and (Per) 2 Au(mnt) 2 , Solid State Comm., Volume 6 (1991), 27009, pp. 391-394 | DOI

[427] C. Bourbonnais; R. T. Henriques; P. Wzietek; D. Köngeter; J. Voiron; D. Jérome Nuclear and electronic resonance approaches to magnetic and lattice fluctuations in the two-chain family of organic compounds (Per) 2 M(mnt) 2 (M=Pt,Au), Phys. Rev. B, Volume 44 (1991), pp. 641-651 | DOI

[428] R. T. Henriques; L. Alcacer; J.-P. Pouget; D. Jerome Electrical conductivity and x-ray diffuse scattering study of the family of organic conductors (Per) 2 M(mnt) 2 , M=Pt,Pd,Au), J. Phys. C: Solid State Phys., Volume 17 (1984), 5197 | DOI

[429] D. Graf; J. S. Brooks; E. S. Choi; M. Almeida; R. T. Henriques; J. C. Dias; S. Uji Quantum interference in the quasi-one-dimensional organic conductor (Per) 2 Pt(mnt) 2 , Phys. Rev. B, Volume 75 (1997), 255101, 5197 | DOI

[430] E. Canadell; M. Almeida; J. S. Brooks Electronic band structure of α-(Per) 2 M(mnt) 2 compounds, Eur. Phys. J. B, Volume 42 (2004), 255101, pp. 453-456 | DOI

[431] H. Bakrim; C. Bourbonnais Superconductivity close to the charge-density-wave instability, Eur. Phys. J. B, Volume 90 (2010), p. 27001 | DOI

[432] M. Bousseau; L. Valade; J.-P. Legros; P. Cassoux; M. Garbauskas; L. V. Interrante Highly Conducting Charge-Transfer Compounds of Tetrathiafulvalene and Transition Metal-dmit-Complexes, J. Am. Chem. Soc, Volume 108 (1986), pp. 1908-1916 | DOI

[433] L. Brossard; M. Ribault; M. Bousseau; L. Valade; P. Cassoux Un nouveau type de supraconducteur moléculaire: TTF[Ni(dmit) 2 ] 2 , C. R. Acad. Sci. II, Volume 302 (1986) no. 5, pp. 205-210 (online at https://gallica.bnf.fr/ark:/12148/bpt6k6296984t/f219.item)

[434] A. Kobayashi; R. Kato; H. Kobayashi; S. Moriyama; Y. Nishino; K. Kajita; W. Sasaki Anion arrangement in a new molecular superconductor, Θ-(BEDT-TTF) 2 (I3) 1-x (AuI2) x , (x<0.02), Chem. Lett., Volume 15 (1986), pp. 2017-2020 | DOI

[435] L. Brossard; M. Ribault; L. Valade; P. Cassoux Pressure induced superconductivity in molecular TTF[Pd(dmit) 2 ] 2 , J. Phys. I France, Volume 50 (1989), pp. 1521-1534 | DOI

[436] S. Ravy; J.-P. Pouget; L. Valade; J.-P. Legros Structural Evidence of Charge Density Waves in the Series of Molecular Conductors and Superconductors: TTF[M(dmit) 2 ] 2 (M=Pd,Ni), Eur. Phys. Lett., Volume 9 (1989), pp. 391-396 | DOI

[437] E. Canadell; I. E.-I. Rachidi; S. Ravy; J.-P. Pouget; L. Brossard; J.-P. Legros On the band electronic structure of X[M(dmit) 2 ] 2 (X=TTF,(CH 3 ) 4 N;M=Ni,Pd) molecular conductors and superconductors, J. Phys. I France, Volume 50 (1989), pp. 2967-2981 | DOI

[438] W. Kaddour; P. Auban-Senzier; H. Raffy; M. Monteverde; J.-P. Pouget; C. R. Pasquier; P. Alemany; E. Canadell; L. Valade Charge density wave and metallic state coexistence in the multiband conductor TTF[Ni(dmit) 2 ]2, Phys. Rev. B, Volume 90 (2014), 205132 | DOI

[439] SIESTA code, 205132 (For more information on the SIESTA code visit: http://Sicmab.cat/leem/siesta)

[440] L. Brossard; M. Ribault; L. Valade; P. Cassoux Simultaneous competition and coexistence between charge density waves and reentrant superconductivity in the pressure-temperature phase diagram of the molecular conductor TTF[Ni(dmit) 2 ] 2 , Phys. Rev. B, Volume 42 (1990), pp. 3935-3943 | DOI

[441] A. Vainrub; D. Jerome; M. F. Bruniquel; P. Cassoux Coexistence of Metallic Character and Charge Density Wave on Ni(dmit) 2 Stacks in TTF[Ni(dmit) 2 ] 2 , Eur. Phys. Lett., Volume 12 (1990), p. 267 | DOI

[442] C. Berthier; D. Jerome; P. Molinié; J. Rouxel Charge density waves in layer structures: A NMR study on a 2H-NbSe 2 single Crystal, Solid State Comm., Volume 19 (1976), pp. 131-135 | DOI

[443] C. Berthier; P. Molinié; D. Jerome Evidence for a connection between charge density Waves and the pressure enhancement of superconductivity in 2HNbSe 2 , Solid State Comm., Volume 18 (1976), pp. 1393-1395 | DOI

[444] A. Kobayashi; E. Fujiwara; H. Kobayashi Single-Component Molecular Metals with Extended-TTF Dithiolate Ligands, Chem. Rev., Volume 104 (2004), pp. 5243-5264 | DOI

[445] A. Kobayashi; B. Zhou; R. Takagi; K. Miyagawa; S. Ishibashi; A. Kobayashi; T. Kawamura; E. Nishibori; K. Kanoda Single-Component Molecular Conductors — Multi-Orbital Correlated Π-d Electron Systems, Bull. Chem. Soc. Jpn, Volume 94 (2021), pp. 2540-2562 | DOI

[446] M. Sasa; A. Yamada; J. Custers; K. Yano; T. Tayama; H. Aoki; K. Machida Crystal structures and physical properties of single-component molecular conductors consisting of nickel and gold complexes with bis(trifluoromethyl) tetrathiafulvalenedithiolate ligands, J. Mater. Chem, Volume 15 (2005), pp. 155-163 | DOI

[447] H. Tanaka; Y. Okano; H. Kobayashi; W. Suzuki; A. Kobayashi A Three-Dimensional Synthetic Metallic Crystal Composed of Single-Component Molecules, Science, Volume 291 (2001), pp. 285-287 | DOI

[448] H. Cui; H. Kobayashi; S. Ishibashi; M. Sasa; F. Iwase; R. Kato; A. Kobayashi A Single-Component Molecular Superconductor, J. Am. Chem. Soc, Volume 136 (2014), pp. 7619-7622 | DOI

[449] A. Kobayashi; H. Tanaka; H. Kobayashi Molecular design and development of single-component molecular metals, J. Mater. Chem, Volume 11 (2001), pp. 2078-2088 | DOI

[450] A. Lebed The Physics of Organic Superconductors and Conductors, Springer Series in Materials Science, 110, Springer-Verlag, Berlin, 2008 | DOI

[451] M. Ribault; D. Jerome; J. Tuchendler; C. Weyl; K. Bechgaard Low-field and anomalous high-field Hall effect in (TMTSF) 2 ClO 4 , J. Physique Lett., Volume 44 (1982), pp. 953-961 | DOI

[452] W. Kang Magnetoresistance study of low-dimensional electrons in the Bechgaard salts, Curr Appl Phys., Volume 4 (2004), pp. 263-266 | DOI

[453] G. Montambaux Contribution à l’étude des conducteurs quasi-unidimensionnels sous champ magnétique, Ph. D. Thesis, Université Paris-Sud, Orsay (France) (1985)

[454] L. Balicas; G. Kriza; F. I. B. Williams Sign Reversal of the Quantum Hall Number in (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 75 (1995) no. 10, pp. 2000-2003 | DOI

[455] J. R. Cooper; W. Kang; P. Auban; G. Montambaux; D. Jerome; K. Bechgaard Quantized Hall effect and a New Field-Induced Phase Transition in the Organic Superconductor (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 65 (1989), pp. 1984-1987 | DOI

[456] S. T. Hannahs; J. S. Brooks; W. Kang; L. Y. Chiang; P. M. Chaikin Quantum Hall effect in a bulk crysal, Phys. Rev. Lett., Volume 63 (1989), pp. 1988-1991

[457] M. Ribault Electronic States below 5K IN (TMTSF) 2 ClO 4 , Mol. Cryst. Liq. Cryst., Volume 119 (1985), pp. 91-95 | DOI

[458] B. Piveteau et al. Hall effect study of the field-induced instabilities in (TMTSF) 2 PF 6 under pressure, J. Phys. C: Solid State Phys, Volume 19 (1986), p. 4483 | DOI

[459] H. Cho; W. Kang Negative Hall plateaus and quantum Hall effect in (TMTSF) 2 PF 6 , Phys. Rev. B, Volume 59 (1999), pp. 9814-9817 | DOI

[460] M. Héritier; G. Montambaux; P. Lederer Stability of the spin density wave phases in (TMTSF) 2 ClO 4 : quantized nesting effect, J. Physique Lett., Volume 45 (1984), pp. 943-952 | DOI

[461] G. Montambaux; M. Héritier; P. Lederer Spin Susceptibility of the Two-Dimensional Electron Gas with Open Fermi Surface under Magnetic Field, Phys. Rev. Lett., Volume 55 (1985), pp. 2078-2081 | DOI

[462] G. Montambaux Susceptibility and instability of the Q1D electron gas under magnetic field, Low dimensional Conductors and Superconductors (D. Jerome; L. G. Caron, eds.), Plenum Press: New York, 1986, pp. 233-242

[463] G. Montambaux; D. Zanchi The quantum Hall effect in Q1D conductors, Synthetic Metals, Volume 86 (1997), pp. 2235-2240 | DOI

[464] D. Zanchi; G. Montambaux Sign Reversals of the Quantum Hall Effect in Quasi-1D Conductors, Phys. Rev. Lett., Volume 77 (1996), pp. 366-369 | DOI

[465] G. Montambaux; D. Jerome Rapid magnetic oscillations and magnetic breakdown in quasi-1D conductors, Comptes Rendus Physique, Volume 17 (2016), pp. 376-388 | DOI

[466] S. Uji; J. S. Brooks; S. Takasaki; J. Yamada; H. Anzai Origin of rapid oscillations in the metallic phase for the organic conductor (TMTSF) 2 ClO 4 , Solid State Comm., Volume 103 (1997), pp. 387-392 | DOI

[467] J. P. Ulmet; P. Auban; S. Askenazy High-Field Shubnikov–de-Haas effect and magnetoresistance in the organic metal (TMTSF) 2 ClO 4 , Solid State Comm., Volume 52 (1984), pp. 547-549 | DOI

[468] A. V. Kornilov et al. Origin of rapid oscillations in low-dimensional (TMTSF) 2 PF 6 , Phys. Rev. B, Volume 76 (2007), 045109 | DOI

[469] W. Kang; J. R. Cooper; D. Jerome Quantized Hall effect in the organic superconductor (TMTSF) 2 ReO 4 , Phys. Rev. B, Volume 43 (1991), 045109, pp. 11467-11470 | DOI

[470] J. S. Brooks; J. O’Brien; R. P. Starrett; R. G. Clark; R. H. McKenzie; S.-Y. Han; J. S. Qualls; S. Takasaki; J. Yamada; H. Anzai; C. H. Mielke; L. K. Montgomery Quantum oscillations in quasi-one-dimensional metals with spin-density-wave ground states, Phys. Rev. B, Volume 59 (1999), pp. 2604-2608 | DOI

[471] E. C. G. Stuckelberg Theory of Inelastic Collisions between Atoms, Helv. Phys. Acta, Volume 5 (1932), pp. 369-422

[472] W. Kang; T. Osada; Y. J. Jo; H. Kang Interlayer Magnetoresistance of Quasi-One-Dimensional Layered Organic Conductors, Phys. Rev. Lett., Volume 99 (2007), 017002 | DOI

[473] A. G. Lebed Anisotropy of an instability for a spin density wave induced by a magnetic field in a Q1D conductor, JETP Lett., Volume 43 (1986) no. 3, 017002, pp. 174-177

[474] A. G. Lebed; P. Bak Theory of Unusual Anisotropy of Magnetoresistance in Organic Superconductors, Phys. Rev. Lett., Volume 63 (1989), pp. 1315-1317 | DOI

[475] B. Gallois; D. Chasseau; J. Gaultier; C. Hauw; A. Filhol; K. Bechgaard (TMTSF) 2 ClO 4 : Meanstructure at 7K comparative studt with 300K and 125K data, J. Phys. Colloques, Volume 44 (1983) no. C3, pp. 1071-1074 | DOI

[476] T. Osada; A. Kawasumi; S. Kagoshima; N. Miura; G. Saito Commensurability Effect of Magnetoresistance Anisotropy in the Quasi-One-Dimensional Conductor Tetramethyltetraselenafulvalenium Perchlorate, (TMTSF) 2 ClO 4 , Phys. Rev. Lett., Volume 66 (1991), pp. 1525-1528 | DOI

[477] M. J. Naughton; O. H. Chung; M. Chaparala; X. Bu; P. Coppens Commensurate Fine Structure in Angular-Dependent Studies of (TMTSF) 2 ClO 4 , Phys. Rev.. Letters, Volume 67 (1991), pp. 3712-3715 | DOI

[478] T. Osada; S. Kagoshima; N. Miura Resonance effect in magnetotransport anisotropy of quasi-one-dimensional conductors, Phys. Rev. B, Volume 46 (1992), pp. 1812-1815 | DOI

[479] G. M. Danner; W. Kang; P. M. Chaikin Measuring the Fermi surface of quasi-one-dimensional metals, Phys. Rev. Lett., Volume 72 (1994), pp. 3714-3717 | DOI

[480] J. Singleton et al. Test for Interlayer Coherence in a Quasi-Two-Dimensional Superconductor, Phys. Rev. Lett., Volume 88 (2002), 037001 | DOI

[481] G. M. Danner; P. M. Chaikin Non Fermi liquid Transport in (TMTSF) 2 PF 6 , Phys. Rev. Lett., Volume 75 (1995), 037001, pp. 4690-4693 | DOI

[482] T. Osada; S. Kagoshima; N. Miura Third Angular Effect of Magnetoresistance in Quasi-One-Dimensional Conductors, Phys. Rev. Lett., Volume 77 (1996), pp. 5261-5264 | DOI

[483] H. Yoshino; A. Oda; K. Murata; H. Nishikawa; K. Kikuchi; I. Ikemoto Direct evidence of dimensionality enhancement of Q1D TMTSF and DMET salts, Synth. Met., Volume 120 (2001), pp. 885-886 | DOI

[484] H. Yoshino et al. Anomalous Angular Dependence of Magnetoresistance of an Organic Superconductor, (DMET) 2 I 3 , J. Phys. Soc. Jpn., Volume 64 (1995), pp. 2307-2310 | DOI

[485] H. Yoshino; S. Shodai; K. Murata Third angular effect of (TMTSF) 2 ClO 4 in R- and Q-states under pressure, Synth. Met., Volume 133-134 (2003), pp. 55-56

[486] L. Alcacer The Physics of organic electronics. From molecules to crystals and polymers, IOP Publishing, 2023 | DOI

[487] M. Suda; Y. Kawasugi; T. Minari; K. Tsukagoshi; R. Kato; H. M. Yamamoto Strain-Tunable Superconducting Field-Effect Transistor with an Organic Strongly-Correlated Electron System, Adv. Mater., Volume 26 (2014), pp. 3490-3495 | DOI

[488] H. M. Yamamoto; M. Nakano; M. Suda; Y. Iwasa; M. Kawasaki; R. Kato A strained organic field-effect transistor with a gate-tunable superconducting channel, Nature Comm., Volume 4 (2013), 2379 | DOI

[489] Y. Kawasugi; H. M. Yamamoto; N. Tajima; T. Fukunaga; K. Tsukagoshi; R. Kato Electric-field-induced Mott transition in an organic molecular crystal, Phys. Rev. B, Volume 84 (2011), 125129, 2379 | DOI

[490] G. Kawaguchi; H. M. Yamamoto Control of Organic Superconducting Field effect Transistor by Cooling Rate, Crystals, Volume 9 (2019), 605, 125129 | DOI

[491] M. Greenblatt; W. H. McCarroll; R. Neifeld; M. Croft; J. V. Waszczak Quasi two-dinensional electronic Properties of the Lithium Molybdenum Bronze, Li 0.9 Mo 6 O 17 , Solid State Comm., Volume 51 (1984), 605, pp. 671-674 | DOI

[492] W. H. Jiao; Z.-T. Tang; Y.-L. Sun; Y. Liu; Q. Tao; C.-M. Feng; Y.-W. Zeng; Z.-A. Xu; G.-H. Cao Superconductivity in a Layered Ta 4 Pd 3 Te 16 with PdTe 2 Chains, J. Am. Chem. Soc, Volume 136 (2014), pp. 1284-1287 | DOI

[493] Z.-T. Tang; J.-K. Bao; Y. Liu; Y.-L. Sun; A. Ablimit; H.-F. Zhai; H. Jiang; C.-M. Feng; Z.-A. Xu; G.-H. Cao Unconventional superconductivity in quasi-one-dimensional A 2 Cr 3 As 3 , Phys. Rev. B, Volume 91 (2015), 020506 | DOI

[494] J. Pan; W. H. Jiao; X. C. Hong; Z. Zhang; L. P. He; P. L. Cai; J. Zhang; G.-H. Cao; S. Y. Li Nodal superconductivity and superconducting dome in new layered superconductor Ta 4 Pd 3 Te 16 , Phys. Rev. B, Volume 92 (2015), 180505, 020506 | DOI

[495] J. F. Mercure; A. F. Bangura; Xiaofeng Xu; N. Wakeham; A. Carrington; P. Walmsley; M. Greenblatt; N. E. Hussey Upper Critical Magnetic Field far above the Paramagnetic Pair-Breaking Limit of Superconducting One-Dimensional Li 0.9 Mo 6 O 17 Single Crystals, Phys. Rev. Lett., Volume 108 (2012), 187003, 180505 | DOI

[496] J.-K. Bao; J.-Y. Liu; C.-W. Ma; Z.-H. Meng; Z.-T. Tang; Y.-L. Sun; H.-F. Zhai; H. Jiang; H. Bai; C.-M. Feng; Z.-A. Xu; G.-H. Cao Superconductivity in Quasi-One-Dimensional K 2 Cr 3 As 3 with Significant Electron Correlations, Phys. Rev. X, Volume 5 (2015), 011013, 187003 | DOI

[497] T. Kong; S. L. Bud’ko; P. C. Canfield Anisotropic H c2 , thermodynamic and transport measurements, and pressure dependence of T c in K 2 Cr 3 As 3 single crystals, Phys. Rev. B, Volume 91 (2015), 020507, 011013 | DOI

[498] Y. Maeno; H. Hashimoto; K. Yoshida; S. Nishizaki; T. Fujita; J. G. Bednorz; F. Lichtenberg Superconducvity in a layered perovskite whitout copper, Nature, Volume 372 (1994), 020507, pp. 532-534 | DOI

[499] A. P. Mackenzie A Personal Perspective on the Unconventional Superconductivity of Sr 2 RuO 4 , J. Supercond. Nov. Magn., Volume 33 (2019), pp. 177-182 | DOI

[500] N. Shirakawa et al. Pressure dependence of superconducting critical temperature of Sr 2 RuO 4 , Phys. Rev. B, Volume 56 (1997) no. 13, pp. 7890-7893 | DOI

[501] K. Kinjo; M. Manago; S. Kitagawa; Z. Q. Mao; S. Yonezawa; Y. Maeno; K. Ishida Superconducting spin smecticity evidencing the Fulde–Ferrell–Larkin–Ovchinnikov state in Sr 2 RuO 4 , Science, Volume 376 (2022) no. 6591, pp. 397-400 | DOI

[502] A. Pustogow; Yongkang Luo; A. Chronister; Y.-S. Su; D. A. Sokolov; F. Jerzembeck; A. P. Mackenzie; C. W. Hicks; N. Kikugawa; S. Raghu; E. D. Bauer; S. E. Brown Constraints on the superconducting order parameter in Sr 2 RuO 4 from oxygen-17 nuclear magnetic resonance, Nature, Volume 574 (2019), pp. 72-75 | DOI

[503] K. Ishida; M. Manago; K. Kinjo; Y. Maeno Reduction of the 17 O Knight Shift in the Superconducting State and the Heat-up Effect by NMR Pulses on Sr 2 RuO 4 , J. Phys. Soc. Jpn., Volume 89 (2020), 034712 | DOI

[504] A. Chronister; A. Pustogow; N. Kikugawa; D. A. Sokolov; F. Jerzembeck; C. W. Hicks; A. P. Mackenzie; E. D. Bauer; S. E. Brown Evidence for even parity unconventional superconductivity in Sr 2 RuO 4 , Proc. Natl. Acad. Sci. U. S. A., Volume 118 (2020) no. 25, e2025313118, 034712 | DOI

[505] V. L. Ginzburg High-Temperature Superconductivity: some remarks (Progress in Low Temperature Physics), Volume 12, Elsevier, 1989, e2025313118, pp. 1-44 | DOI

[506] P. W. Anderson; J. R. Schrieffer A dialogue on the theory of High T c , Physics Today, Volume 44 (1991), pp. 54-61 | DOI

Cité par Sources :

Commentaires - Politique