[Les conducteurs organiques quasi-unidimensionnels : de l’état isolant de Peierls et de la conductivité de Fröhlich à la supraconductivité à médiation magnétique, une rétrospective]
Il est indiscutable que c’est la possibilité d’aboutir à une supraconduction de haute température qui a stimulé le démarrage des recherches sur les conducteurs organiques. Suite à la découverte il y a plus de 50 ans, d’une conduction de type métallique dans des composés moléculaires, il est apparu que la composition chimique, la structure cristalline quasi-unidimensionnelle sont des facteurs qui déterminent les propriétés physiques de ces matériaux ; un remplissage de bande incommensurable favorisant généralement l’apparition d’une surstructure de type Peierls avec un état fondamental à basse température généralement isolant et plus rarement supraconductrice, alors qu’un remplissage commensurable peut conduire à basse température, soit à un isolant magnétique, soit à un supraconducteur suivant la force du couplage inter chaines. Il est à noter que la simplicité structurale de ces matériaux a contribué au développement de modèles théoriques en harmonie avec pratiquement toutes les observations expérimentales. Même si ces conducteurs organiques n’ont pas encore permis de stabiliser de la supraconduction à haute température, il n’en reste pas moins que la profusion de leurs propriétés physiques originales les qualifient comme des systèmes remarquables en physique de la matière condensée ainsi que pour leur valeur pédagogique. Cette revue historique est destinée à la présentation des propriétés expérimentales tout en faisant allusion aux développements théoriques des conducteurs et supraconducteurs de basse dimension qui seront l’objet d’un article de revue ultérieur.
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
It is indisputable that the search for high-temperature superconductivity has stimulated the work on low-dimensional organic conductors at its beginning. Since the discovery of true metal-like conduction in molecular compounds more than 50 years ago, it appeared that the chemical composition and the quasi one-dimensional crystalline structure of these conductors were determining factors for their physical properties; materials with incommensurate conduction band filling favoring the low-dimensional electron-phonon diverging channel and the establishment of the Peierls superstructure and more rarely superconductivity at low temperature, while those with commensurate band filling favor either magnetic insulating or superconducting states depending on the intensity of the coupling between conductive chains. In addition, the simple structures of these materials have allowed the development of theoretical models in close cooperation with almost all experimental findings.
Even though these materials have not yet given rise to true high-temperature superconductivity, the wealth of their physical properties makes them systems of choice in the field of condensed matter physics due to their original properties and their educational qualities. Research efforts continue in this field. The present retrospective, which does not attempt to be an exhaustive review of the field, provides a set of experimental findings alluding to the theoretical development while a forthcoming article will address in more details the theoretical aspect of low dimensional conductors and superconductors.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Accepté le :
Publié le :
Mot clés : État de Peierls–Fröhlich, Physique des systèmes unidimensionnels, Transitions de phases, Transport électronique, Ordre à longue distance induit sous champ, Supraconductivité non conventionnelle, Conducteurs et supraconducteurs organiques, Sels organiques (TMTSF)2X
Denis Jerome 1 ; Claude Bourbonnais 2
@article{CRPHYS_2024__25_G1_17_0, author = {Denis Jerome and Claude Bourbonnais}, title = {Quasi one-dimensional organic conductors: from {Fr\"ohlich} conductivity and {Peierls} insulating state to magnetically-mediated superconductivity, a retrospective}, journal = {Comptes Rendus. Physique}, pages = {17--178}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.164}, language = {en}, }
TY - JOUR AU - Denis Jerome AU - Claude Bourbonnais TI - Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective JO - Comptes Rendus. Physique PY - 2024 SP - 17 EP - 178 VL - 25 PB - Académie des sciences, Paris DO - 10.5802/crphys.164 LA - en ID - CRPHYS_2024__25_G1_17_0 ER -
%0 Journal Article %A Denis Jerome %A Claude Bourbonnais %T Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective %J Comptes Rendus. Physique %D 2024 %P 17-178 %V 25 %I Académie des sciences, Paris %R 10.5802/crphys.164 %G en %F CRPHYS_2024__25_G1_17_0
Denis Jerome; Claude Bourbonnais. Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. Comptes Rendus. Physique, Volume 25 (2024), pp. 17-178. doi : 10.5802/crphys.164. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.164/
[1] Further experiments with Liquid Helium. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. The Disappearance of the resistance of mercury, KNAW Proceedings, Volume 14 I, KNAW; Johannes Müller, Amsterdam (1911), pp. 113-115 (online at https://dwc.knaw.nl/DL/publications/PU00013124.pdf)
[2] Further experiments with Liquid Helium. On the electrical resistance of Pure Metals etc. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears, KNAW Proceedings, Volume 14 II, KNAW; Johannes Müller, Amsterdam (1911-1912), pp. 818-821 (online at https://dwc.knaw.nl/DL/publications/PU00013242.pdf)
[3] Kamerlingh Onnes and the discovery of superconductivity, Am. J. Phys., Volume 62 (1994), pp. 1105-1108 | DOI
[4] Microscopic Theory of Superconductivity, Phys. Rev., Volume 106 (1957), pp. 162-164 | DOI | MR
[5] Theory of Superconductivity, Phys. Rev., Volume 108 (1957), pp. 1175-1204 | DOI | MR | Zbl
[6] Organic amalgams: substances with metallic properties composed in part of non-metallic elements, J. Am. Chem. Soc., Volume 33 (1911), pp. 273-292 | DOI
[7] Supraleitung und Diamagnetismus, Physica, Volume 2 (1935), pp. 341-354 | DOI | Zbl
[8] The diamagnetic anisotropy of aromatic molecules, J. Chem. Phys., Volume 4 (1936), pp. 673-677 | DOI
[9] Théorie quantique des courants interatomiques dans les combinaisons aromatiques, J. Phys. Radium, Volume 8 (1937) no. 10, pp. 397-409 | DOI
[10] Supraconductivity in Aromatic Compounds, J. Chem. Phys., Volume 5 (1937), pp. 837-838 | DOI
[11] Persistent currents in mesoscopic rings : ensemble averages and half-flux-quantum periodicity, J. Phys. I France, Volume 50 (1989), pp. 2695-2707 | DOI
[12] Low-Dimensional Cooperative Phenomena and the Possibility of High Temperature Superconductivity (H. J. Keller, ed.), NATO Advanced Study Institutes Series. Series B : Physics, 7, Plenum Press, 1975 (Lectures presented at the 1974 Nato Advanced Study Institute, held in Starnberg, Germany, September 3-15, 1974)
[13] The Semiconductivity of Organic Substances, Trans. Faraday Soc., Volume 49 (1953), pp. 79-86 | DOI
[14] On the Electrical Conductivity of Violanthrene, Iso-Violanthrene, and Pyranthrene, J. Chem. Phys., Volume 18 (1950) no. 6, pp. 810-811 | DOI
[15] The Effect of Pressure on the Semi-conductivity of Isoviolanthrone, Bull. Chem. Soc. Jpn., Volume 28 (1955) no. 8, pp. 570-572 | DOI
[16] Electrical Conductivity of the Perylene-Bromine Complex, Nature, Volume 173 (1954), pp. 168-169 | DOI
[17] 7,7,8,8-Tetracyanoquinodimethane and its electrically conducting Anion-Radical Derivatives, J. Am. Chem. Soc., Volume 82 (1960), pp. 6408-6409 | DOI
[18] Physical properties of highly anisotropic systems: Radical-Ion salts and charge transfer complexes, Ann. Phys., Volume 1 (1976), pp. 145-256 | DOI
[19] Substituted Quinodimethans. Anion-radical Derivatives and Complexes of 7,7,8,8-Tetracyanoquinodimethan, J. Am. Chem. Soc., Volume 84 (1962), pp. 3374-3387 | DOI
[20] Conduction mechanism of highly-conducting organic complexes based on TTF-TCNQ, JETP Lett.-USSR, Volume 8 (1968), p. 218-+
[21] Electric and Magnetic Properties of Linear Conducting Chains, Phys. stat. sol. (a), Volume 12 (1972), pp. 9-45 | DOI
[22] The Problem of High Temperature Superconductivity, Contemp. Phys., Volume 9 (1968) no. 4, pp. 355-374 | DOI
[23] Salts derived from the 7,7,8,8-Tetracyanoquinodimethans. Anion-radical and Benzologues of Quaternary Pyrazinium Cations, Can. J. Chem., Volume 43 (1965), pp. 1448-1453 | DOI
[24] Metal–Insulator Transition in an organic Solid: Experimental Realization of the one-dimensional Hubbard Model, Solid State Comm., Volume 9 (1971), pp. 1803-1808 | DOI
[25] Nuclear relaxation in 1D conductors, Proc. of the International Conference of Quasi-One-Dimensional Conductors I (S. Barišić; A. Bjeliś; J. R. Cooper; B. Leontić, eds.) (Lectures Notes in Physics), Volume 95, Springer (1978), pp. 145-152 | DOI
[26] Longueurs de Liaison et Transfert de Charge dans les Sels du Tetracyanoquinodiméthane, Acta Cryst. B, Volume B33 (1977), pp. 2744-2750 | DOI
[27] Evidence for a Peierls Distortion or a Kohn Anomaly in One-Dimensional Conductors of the Type , Phys. Rev. B, Volume 8 (1973), pp. 571-575 | DOI
[28] X-ray diffuse sattering evidence for a phase transition in TTF-TCNQ, Phys. Rev. Lett., Volume 35 (1975), pp. 445-449 | DOI
[29] X-ray observation of cross over of to scattering in , Mol. Cryst. Liq. Cryst., Volume 85 (1982) no. 1–4, pp. 203-213
[30] Superconducting Silicides and Germanides, Phys. Rev., Volume 87 (1953), p. 884 | DOI
[31] Superconductivity of , Phys. Rev, Volume 95 (1954), p. 1435 | DOI
[32] Superconductivity in Nb-Ge films above 22 K, Appl. Phys. Lett, Volume 23 (1973), pp. 480-482 | DOI
[33] The search for high-temperature superconductors, Physics Today, Volume 24 (1971), pp. 23-28 | DOI
[34] The Electronic Band Structure of and Ga, Reviews of Modern Physics, Volume 36 (1964), pp. 175-177 | DOI
[35] Instabilité électronique et changement de phase cristalline des composés du type à basse température, J. Phys. I France, Volume 27 (1966), pp. 153-165 | DOI
[36] Strong-coupling superconductivity in type of Compounds, Physical Review Letters, Volume 19 (1967) no. 18, pp. 1039-1041 | DOI
[37] Interactions between Electrons and Lattice vibrations in a Superconductor, Sov. Phys. JETP, Volume 11 (1960) no. 3, pp. 696-702 | Zbl
[38] New Mechanism for Superconductivity, Phys. Rev. Lett., Volume 15 (1965), pp. 524-526 | DOI
[39] Metallic alloys, Nuovo Cim., Volume 7 (1958) no. 2, pp. 287-311 | DOI
[40] Possibility of Synthesizing an Organic Superconductor, Phys. Rev. A, Volume 134 (1964), p. A1416-A1424 | DOI
[41] Historical Approach to Organic Superconductivity, The Physics of Organic Superconductors and Conductors (A. G. Lebed, ed.) (Springer Series in Materials Science), Volume 110, Springer, 2008 | DOI
[42] Superconductivity at Room Temperature, Scientific American, Volume 212 (1965) no. 2, pp. 21-27
[43] High Temperature Superconductivity, J. Polymer. Sci. C., Volume 29 (1970), pp. 3-16 | DOI
[44] Possibility of Superconductive-Type Enhanced Conductivity in DNA at Room Temperature, Phys. Rev., Volume 188 (1969), pp. 710-715 | DOI
[45] International symposium on the physical and chemical problems of possible organic superconductors, Physics Department, Stanford University, 1969
[46] The exciton mechanism in superconductivity, J. polym. sci., Polym. symp., Volume 9 (1970), pp. 17-26 | DOI
[47] Possibility of Superconductivity type phenomena in a one-dimensional system, Sov. Phys. JETP, Volume 23 (1966), pp. 489-501 | DOI
[48] Statistical Physics, Pergamon Press, London, 1959, 482 pages
[49] Absence of ferromagnetism or antiferromagnetism in one or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., Volume 17 (1966), pp. 1133-1136 | DOI
[50] Bis =dithiolium Chloride: an Unusually Stable Organic Radical Cation, Chem. Comm. (1970), pp. 1453-1454 | DOI
[51] Electrical Conductivity by the Bis-l,3-dithiole-Bis-1,3-dithiolium System, J. Am. Chem. Soc. (1972), pp. 670-672 | DOI
[52] Tetrathiafulvalenes as pi-Electron Donors for Intramolecular Charge-Transfer Materials, Adv. Mater., Volume 1 (199), pp. 11-23
[53] Molecular rectifiers, Chem. Phys. Lett., Volume 29 (1974), pp. 277-283 | DOI
[54] Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics, Chem. Rev., Volume 104 (2004), pp. 4891-4945 | DOI
[55] Non-integral charge transfer in an organic metal: The structure and stability range of , Solid State Comm., Volume 17 (1975), pp. 635-638 | DOI
[56] et al. Commensurate Peierls transition in a quasi-one-dimensional compound: The bromide salt of tetrathiafulvalene (TTF), Phys. Rev. B, Volume 22 (1980), pp. 5599-5605 | DOI
[57] Superconducting Fluctuations and the Peierls instability in an organic solid, Solid State Comm., Volume 12 (1973), pp. 1125-1132 | DOI
[58] Electron Transfer in a New Highly Conducting Donor-Acceptor Complex, J. Am. Chem. Soc, Volume 95 (1973), pp. 948-949 | DOI
[59] Optical properties of TTF-TCNQ in the visible and infrared, Solid State Comm., Volume 13 (1973), pp. 943-948 | DOI
[60] The Crystal Structure of the 1:1 radical cation-radical anion salt of -bis--dithiole (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ), Acta Cryst. B, Volume 30 (1974), pp. 763-768 | DOI
[61] The properties of five highly conducting salts derived from TMTSF, Solid State Comm., Volume 33 (1980), pp. 1119-1125 | DOI
[62] Determination of the Extent of Charge Transfer in Partially Oxidized Derivatives of Tetrathiafulvalene and Tetracyanoquinodimethan by Resonance Raman Spectroscopy, J. Phys. Chem., Volume 90 (1986), pp. 739-743 | DOI
[63] Growth of Large-Crystals of Charge-Transfer complex, Tetrathiofulvalene-Tetracyanoquinodimethane (TTF-TCNQ), J. Cryst. Growth., Volume 33 (1976), pp. 185-187 | DOI
[64] Molecular Conductors, Chem. Rev. (P. Batail, ed.), Volume 104, 2004 no. 11, pp. 4887-5782
[65] The Structure, Conductivity, and Thermopower of HMTTF-TCNQ, Solid State Comm., Volume 20 (1976), pp. 943-946 | DOI
[66] Optical conductivity studies in a one-dimensional organic metal: Tetrathiofulvalene tetracyanoquinodimethan (TTF-TCNQ), Phys. Rev. B, Volume 10 (1974), pp. 1328-1342 | DOI
[67] Synthèse de dérivés du tétrathiofulvalène, C. R. Hebd. Seances Acad. Sci. C, Volume 280 (1975), pp. 901-903 (online at https://gallica.bnf.fr/ark:/12148/bpt6k6224856m/f51.item)
[68] Sur quelques nouveaux complexes organiques à propriétés anisotropes, C. R. Hebd. Seances Acad. Sci. C, Volume 284 (1977) no. 5, pp. 211-213 (online at https://gallica.bnf.fr/ark:/12148/bpt6k62367869/f223.item)
[69] Magnetic susceptibility studies of tetrathiofulvalene-tetracyanoquinodimethan TTF-TCNQ and related organic metals, Phys. Rev. B, Volume 10 (1974), pp. 3131-3139 | DOI
[70] Synthesis of the Organic Conductor Tetramethyltetraselenofulvalenium, 7,7,8,8-tetracyano-p-quinodimethanide (TMTSF–TCNQ)[-tetramethyl--bis-1,3-diselenolium 3,6-bis-(dicyanomethylene)cyclohexadienide], J. Chem. Soc., Chem. Commun. (1974), pp. 937-938 | DOI
[71] Structure Control in Organic Metals. Synthesis of Tetraselenofulvalene and Its Charge Transfer Salt with Tetracyano-p -quinodimethane, J. Am. Chem. Soc, Volume 96 (1974), pp. 7376-7378 | DOI
[72] Stabilization of the organic metallic state: The Properties of Two Substituted Tetraselenafulvalenes and Their TCNQ Salts, Mol. Cryst. Liq. Cryst., Volume 49 (1976) no. 32, pp. 227-230 | DOI
[73] et al. A systematic study of an isomorphous series of organic solid state conductors based on tetrathiafulvalene, J. Chem. Phys., Volume 66 (1977), pp. 377-385 | DOI
[74] Nouvelle voie d’accès à des conducteurs organiques: Action du Thiocyanogene sur le Tetrathiofulvalene et le Tetramethyltetrathiofulvalene, C. R. Hebd. Seances Acad. Sci. C, Volume 284 (1977) no. 12, pp. 463-465 (online at https://gallica.bnf.fr/ark:/12148/bpt6k6216790n/f35.item)
[75] Physical Properties of One Dimensional Conductors, Mol. Cryst. Liq. Cryst., Volume 50 (1979), pp. 43-58 | DOI
[76] The rocky road to high temperature superconductivity, Novel Supercondcutivity (S. A. Wolf; V. Z. Kresin, eds.), Volume 12, Plenum Press, New York, 1987, pp. 1-8 | DOI
[77] Possible High Tc Superconductivity in the BaLaCu0 System, Z. Phys. B - Condensed Matter, Volume 64 (1986), pp. 189-193 | DOI
[78] Wikipedia, https://en.wikipedia.org/wiki/Klaus_Bechgaard)
([79] Transport properties of some derivatives of tetrathiafulvalene-tetracyano-p-quinodimethane (TTF-TCNQ), Phys. Rev. B, Volume 18 (1978), pp. 905-921 | DOI
[80] Metallic high pressure phase in tetraselenotetracene chloride , JETP Lett., Volume 28 (1978) no. 5, pp. 284-287
[81] Salts: Preparation, Structure and Effect of the Anions, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 357-369 (Proc International Conference on Low-Dimensional Conductors) | DOI
[82] Electrocrystallization, an Invaluable Tool for the Construction of Ordered, Electroactive Molecular Solids, Chem. Mater., Volume 10 (1998), pp. 3005-3015 | DOI
[83] Electrocrystallisation of organic superconductors, 2023 (Video, Zenodo, online at https://doi.org/10.5281/zenodo.8064104) | DOI
[84] The Design and Synthesis of Organic Metals, Acc. Chem. Res., Volume 7 (1974), pp. 232-240 | DOI
[85] Band structure parameters for SolidTTF-TCNQ, Solid State Comm., Volume 15 (1974), pp. 795-801 | DOI
[86] Organic conductors and superconductors, Adv. Phys., Volume 31 (1982), pp. 299-490 | DOI
[87] Band Structure of TTF-TCNQ, J. Phys. I France, Volume 39 (1978), pp. 711-717 | DOI
[88] Electronic properties of organic conductors: pressure effects, Chemistry and Physics of One-Dimensional Metals (H. J. Keller, ed.), Plenum Press (New York), 1977, pp. 341-367 | DOI
[89] Spin relaxation and Magnetic susceptibility studies of HMTSF-TCNQ, Solid State Comm., Volume 20 (1976), pp. 107-113 | DOI
[90] Quantum Theory of Solids, Oxford University Press, London, 1955
[91] Superconducting fluctuations at ?, Physics Today, Volume May (1973), p. 17
[92] Fluctuation Theory of the Superconducting Transition in Restricted Dimensionality, Phys. Rev. Lett., Volume 27 (1971) no. 19, pp. 1273-1276
[93] DC Conductivity in an Isostructural Family of Organic Metals, Phys. Rev. Lett., Volume 34 (1975), pp. 741-744 | DOI
[94] Rigid-Atom Electron-Phonon Coupling in the Tight-Binding Approximation, Phys. Rev. B, Volume 5 (1972) no. 3, pp. 932-941 | DOI
[95] Apparent Giant Conductivity peaks in an anisotropic medium TTF-TCNQ, Solid State Comm., Volume 14 (1974), pp. 347-351 | DOI
[96] et al. Electrical conductivity of tetrathiofulvalenium-tetracyanoquinodimethanide (TTF-TCNQ), Phys. Rev. B, Volume 13 (1976) no. 11, pp. 5105-5110
[97] Isotope Effect in the Peierls transition temperature of TTF-TCNQ, Solid State Comm., Volume 25 (1978), pp. 699-704 | DOI
[98] Pressure dependence of the phase transitions in tetrathiafulvalene-tetracyanoquinodimethane: Evidence for a longitudinal lockin at 20 kbar, Phys. Rev. Lett., Volume 40 (1978), pp. 1048-1051 | DOI
[99] Electronic Properties of TTF-TCNQ: an NMR Approach, J. Phys. I France, Volume 38 (1977), pp. 931-948 | DOI
[100] On the behaviour of TSF-TCNQ under pressure, Solid State Comm., Volume 22 (1977), pp. 257-263 | DOI
[101] Temperature Dependence of the Near-Infrared Optical Properties of Tetrathiofulvalinium Tetracyanoquinodimethane TTF-TCNQ, Phys. Rev. Lett., Volume 31 (1973), pp. 1311-1314 | DOI
[102] Microwave Hall effect in a quasi-one-dimensional system: Tetrathiafulvalenium-tetracyanoquinodimethanide TTF-TCNQ, Phys. Rev. B, Volume 15 (1977), p. 1782 | DOI
[103] Electrical conductivity of tetrathiofulvalinium tetracyanoquinodimethan TTF-TCNQ, Phys. Rev. B, Volume 10 (1974) no. 4, pp. 1298-1307 | DOI
[104] Fluctuating collective conductivity and single particle conductivity in 1-D organic conductors, The Physics and Chemistry of Low Dimensional Solids (L. Alcacer, ed.), D. Reidel, 1980, pp. 123-142
[105] Superconducting Fluctuations in one-dimensional Organic Solids, Solid State Comm., Volume 13 (1973), pp. 357-359 | DOI
[106] Theory of fluctuation superconductivity from electron-phonon interactions in pseudo-one-dimensional systems, Phys. Rev. B, Volume 9 (1974) no. 1, pp. 119-129 | DOI
[107] On the theory of superconductivity: the one-dimensional case, Proc. R. Soc. Lond. A, Volume 223 (1954), pp. 296-305 | DOI | Zbl
[108] Fluctuation conductivity in the incommensurate Peierls system, Phys. Rev. Lett., Volume 35 (1974) no. 11, pp. 638-641 | DOI
[109] Observation of the Kohn anomaly and the Peierls transition in TTF-TCNQ by X-ray scattering, J. Phys. Soc. Jpn., Volume 39 (1975) no. 4, pp. 1143-1144 | DOI
[110] Neutron-Scattering Study of the 38 and 54K Phase Transitions in Deuterated Tetrathiafulvalene-Tetracyanoquinodimethane TTF-TCNQ, Phys. Rev. Lett.., Volume 35 (1975) no. 22, pp. 1518-1521 | DOI
[111] NMR studies of TTF-TCNQ, J. Phys. C: Solid State Phys., Volume 17 (1984), pp. 3777-3792 | DOI
[112] Knight shift in TTF-TCNQ : Determination of the local susceptibility, Phys. Rev. B, Volume 14 (1976) no. 7, pp. 2746-2756 | DOI
[113] Spin susceptibility of tetrathiafulvalene tetracyanofluinodimethane, TTF-TCNQ in the semiconducting regime: Comparison with conductivity, Phys. Rev. B, Volume 15 (1977) no. 2, pp. 1017-1023 | DOI
[114] Theory of the Structural Phase Transformations in Tetrathiafulvalene-Tetracyanoquinodimethane TTF-TCNQ, Phys. Rev. Lett., Volume 36 (1976), pp. 978-982 | DOI
[115] Behavior of Charge Density Waves in a One-Dimensional Organic Conductor Visualized by Scanning Tunneling Microscopy, Phys. Rev. Lett., Volume 81 (1998) no. 15, pp. 3187-3190 | DOI
[116] Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves, Phys. Rev. B, Volume 67 (2003), 121401 | DOI
[117] An interpretation for the STM imaging of an organic molecule, tetrathiafulvalene–tetracyanoquinodimethane (TTF-TCNQ), Nanotechnology, Volume 7 (1996), pp. 122-127 | DOI
[118] The Landau theory of phase transitions in TTF-TCNQ, Phys. Rev. B, Volume 16 (1977), pp. 5238-5249 | DOI
[119] Commensurate Ordering in Tetrathiafulvalene-Tetracyanoquinodimethane, Phys. Rev. Lett., Volume 37 (1976), p. 1517 | DOI
[120] X-ray scattering and Neuron scattering from one-dimensional conductors, Highly Conducting One-Dimensional Solids (J. T. Devreese, ed.), Plenum Press, New York, 1979, pp. 17-67 | DOI
[121] X Ray Observation of and Scatterings in Tetrathiafulvalene-Tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. Lett., Volume 37 (1976), pp. 437-440 | DOI
[122] The Peierls instability and charge density wave in one-dimensional electronic conductors, Comptes Rendus Physique, Volume 17 (2016), pp. 332-356 | DOI
[123] X-ray studies of and anomalies in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. B, Volume 16 (1977) no. 4, pp. 1468-1479 | DOI
[124] New Mechanism for a Phonon Anomaly and Lattice Distortion in Quasi One-Dimensional Conductors, Phys. Rev. Lett., Volume 37 (1976), pp. 107-110 | DOI
[125] Electron-phonon interaction and phonon dynamics in one-dimensional conductors, Phys. Rev. B, Volume 37 (1988), pp. 10068-10085 | DOI
[126] Far-infrared optical properties of tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. B, Volume 42 (1990), pp. 4088-4099 | DOI
[127] Chapter 3 Structural Instabilities (Esther Conwell, ed.) (Semiconductors and Semimetals), Volume 27, Elsevier, 1988, pp. 87-214 | DOI
[128] Peierls transition in the strong-coupling Hubbard chain, Phys. Rev. B, Volume 12 (1975), pp. 1090-1092 | DOI
[129] Techniques de hautes pressions à trés basses températures, Revue de Physique Appliquée, Volume 4 (1969), pp. 467-470 | DOI
[130] Appareil de pression hysdrostatique pour mesures éléctriques jusqu’à 17 kbar à très basse température, Rev. Phys. Appl. (Paris), Volume 5 (1970), pp. 731-736 | DOI
[131] Conductivity of the One-Dimensional Conductor Tetrathiafulvalene-Tetracyanoquinodimethane (TTF-TCNQ) near Commensurability, Phys. Rev. Lett., Volume 43 (1979) no. 3, pp. 227-230 | DOI
[132] Fluctuation conductivity in conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), J. Physique Lett., Volume 40 (1979), pp. 385-389 | DOI
[133] Structural evidence of 2k commensurablity in TTF-TCNQ under pressure, Solid State Comm., Volume 37 (1981), pp. 875-877 | DOI
[134] Quasi-One-Dimensional conductors:The Peierls instability, Pressure and Fluctuations effects, Extended Linear Chain Compounds (J. S. Miller, ed.), Volume 2, Plenum Press, New York, 1982, p. 159
[135] Pressure dependence of the Drude optical edge of tetrathiafulvalenium (TTF) and tetraselenafulvalenium (TSF) tetracyanoquinodimethanide (TCNQ), Phys. Rev. B, Volume 118 (1978), pp. 2692-2700 | DOI
[136] Pinning of charge density waves in irradiated TTF-TCNQ, Solid State Comm., Volume 37 (1981), pp. 405-408 | DOI
[137] Far-Infrared Study of the Charge Density Wave in Tetrathiafulvalene Tetracyanoquinodimethane (TTF-TCNQ), Phys. Rev. Lett., Volume 47 (1981), pp. 597-600 | DOI
[138] Linear Temperature Dependence of the constant Volume Resistivity of TTF-TCNQ, J. Physique Lett., Volume 39 (1978), pp. 134-138 | DOI
[139] Scattered Wave Calculations of Monomers and Dimers of Tetraselenafulvalene (mathrmTSeF), Phys. Scr., Volume 16 (1977), pp. 303-306 | DOI
[140] Xa scattered-wave calculations for dimers and trimers of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ), Phys. Rev. B, Volume 16 (1977), pp. 2453-2465 | DOI
[141] Dynamical properties of charge density waves, Charge Density Waves in Solids (L. V. Gorkov; G. Grüner, eds.), North Holland, Amsterdam, 1989, pp. 137-190
[142] Defect-concentration dependence of the charge-density-wave transport in tetrathiafulvalene tetracyanoquinodimethane, Phys. Rev. B, Volume 35 (1987), pp. 5884-5886 | DOI
[143] Observation of Nonlinear Electrical Transport at the Onset of a Peierls Transition in an Organic Conductor, Phys. Rev. Lett., Volume 55 (1985) no. 21, pp. 2351-2354 | DOI
[144] Nonlinear Electrical Transport Effects in Tetrathiafulvalene-Tetracyanoquinodimethane as Driven through Charge-Density-Wave Commensurability, Phys. Rev. Lett., Volume 58 (1987) no. 3, pp. 262-265 | DOI
[145] Dynamical Properties of charge density waves, Charge Density Waves in Solids (L. V. Gorkov; G. Grüner, eds.) (Modern Problems in Condensed Matter Sciences), Volume 25, North-Holland, 1989, pp. 137-189 | DOI
[146] Temperature-Pressure Phase Diagram in TTF-TCNQ: Strong Suppression of Charge-Density-Wave State under Extremely High Pressure, J. Phys. Soc. Jpn., Volume 76 (2007) no. 3, 033701 | DOI
[147] Interchain coupling and the Peierls transition in linear-chain systems, Phys. Rev. B, Volume 12 (1975), pp. 3174-3185 | DOI
[148] Organic Alloys: Synthesis and Properties of Solid Solutions of Tetraselenafulvalene- Tetracyano-p-quinodimethane (TSF-TCNQ) and Tetrathiafulvalene-Tetracyano-p-quinodimethane (TTF-TCNQ), J. Am. Chem. Soc., Volume 99 (1977), pp. 5909-5916 | DOI
[149] X ray diffuse scattering study of 1D organic conductors: TTF-TCNQ and its family, Proceeding of the International Conference Dubrovnik, SR Croatia, SFR Yugoslavia (Lecture Notes in Physics), Volume 95, Springer, Berlin, Heidelberg, 1979, pp. 14-27 | DOI
[150] Thermopower of an isostructural series of organic conductors, Phys. Rev. B, Volume 13 (1976), pp. 1627-1632 | DOI
[151] Diffuse X-ray scattering in the metallic state of TSF-TCNQ and HMTSF-TCNQ, Solid State Comm., Volume 19 (1976), pp. 925-930 | DOI
[152] Systematic study of the transitions in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) and its selenium analogs, Phys. Rev. B, Volume 13 (1976) no. 6, pp. 2254-2261 | DOI
[153] Magnetic susceptibility of TSF-TCNQ (tetraselenafulvalene-tetracyanoquinodimethane) and its alloys with TTF-TCNQ, Phys. Rev. B, Volume 17 (1978), pp. 2269-2275 | DOI
[154] High-resolution polarized far-infrared vibrational spectra of semiconducting TTF-TCNQ and TSF-TCNQ, Can. J. Phys, Volume 59 (1981), pp. 339-362 | DOI
[155] Peierls transition and short range order of charge-density waves in TSeF-TCNQ - an X ray study, Quasi One-Dimensional Conductors I (S. Bariŝić; A. Bjeliŝ; J. R. Cooper; B. A. Leontić, eds.) (Lecture Notes in Physics), Volume 95, Springer, 1979, pp. 28-30 | DOI
[156] Fluctuating and single particles conductivity channels in , Solid State Comm., Volume 42 (1982), pp. 587-589 | DOI
[157] Structural Investigations of the Peierls Transitions in TTF-TCNQ and Related Compounds (TSEF-TCNQ, HMTTF-TCNQ, NMP-TCNQ), Molecular Metals (W. E. Hatfield, ed.), Plenum Press, New York, 1979, pp. 87-103 | DOI
[158] Commensurability and fluctuating conductivity in the organic conductor TSF-TCNQ, Solid State Comm., Volume 36 (1980), pp. 813-816 | DOI
[159] Peierls transition in a quasi—one dimensional system, Solid State Comm., Volume 15 (1974), pp. 269-272 | DOI
[160] Low-Temperature Metallic Behavior and Resistance Minimum in a New Quasi One-Dimensional Organic Conductor, Phys. Rev. Lett., Volume 34 (1975), pp. 1561-1564 | DOI
[161] et al. Stabilisation of the metallic state at low temperatures in HMTTF-TCNQ under pressure, J. Phys. C: Solid State Phys., Volume 11 (1978), p. 263 | DOI
[162] X-Ray Crystal Structure of the Organic Conductor from - Bi - (2,4 - diselenabicyclo[3.3.0]octylidene) and 7,7,8,8-Tetracyano - p -quinodimethane (HMTSF-TCNQ), J. Chem. Soc., Chem. Commun. (1976), pp. 334-335 | DOI
[163] Magnetoresistance studies of , Chem. Scr., Volume 17 (1981) no. 1-5, pp. 45-46
[164] Semi-Metallic Behaviour of HMTSF-TCNQ at low temperatures under pressure, Solid State Comm., Volume 19 (1976), pp. 749-754 | DOI
[165] A model for the electronic band structure of HMTSeF-TCNQ, Solid State Comm., Volume 19 (1976), pp. 1149-1155 | DOI
[166] The Hall effect in HMTSF-TCNQ, J. Physique Lett., Volume 37 (1976), pp. 349-353 | DOI
[167] Observation of de Haas-Shubnikov oscillations in an organic metal, HMTSF-TCNQ, Solid State Comm., Volume 26 (1978), pp. 969-971 | DOI
[168] Magnetic-field-induced phase transitions in the quasi-one-dimensional organic conductor HMTSF–TCNQ, Low Temp. Phys., Volume 40 (2014) no. 4, pp. 371-376 (a Memorial Issue for the 60th Year Anniversary of Lifschitz-Kosevich theory) | DOI
[169] The Physics of Organic Superconductors and Conductors, Springer: Berlin, Heidelberg, 2008
[170] et al. Magnetic-Field-Induced Phase Transition and a Possible Quantum Hall Effect in the Quasi-One-Dimensional CDW Organic Conductor HMTSF-TCNQ, J. Mod. Phys., Volume 5 (2014), 46453 | DOI
[171] Relative stability of donor and acceptor stacks against Peierls distortion in the tetrathia- and tetraselenafulvalene-tetracyanoquinodimethane family of organic metals, Phys. Rev. B, Volume 17 (1978), pp. 1579-1591 | DOI
[172] Diffuse X-ray scattering studies of one-dimensional organic metals, Chem. Scr., Volume 55 (1981) no. 1-5, pp. 85-91
[173] Transport properties of the metallic state of TMTSF-DMTCNQ, J. Phys. I France, Volume 40 (1979), pp. 1199-1206 | DOI
[174] Shubnikov–de Haas oscillations in an organic conductor, tetramethyltetraselenafulvalene-2,5-dimethyl- tetracyanoquinodimethane TMTSF-DMTCNQ, J. Physique Lett., Volume 44 (1983), pp. 285-293 | DOI
[175] Magnetic Quantum Effects, Semiconductors and Semimetals. Vol. 1 (R. K. Willardson; A. C. Beer, eds.), Volume 1, Academic Press Inc.: New York and London, 1966, pp. 159-202
[176] et al. The magnetic susceptibility of TMTSF-DMTCNQ under pressure, Solid State Comm., Volume 32 (1979), pp. 1151-1154 | DOI
[177] Possibility of superconducting precursor effects in quasi-one-dimensional organic conductors : theory and experiments, J. Phys. France, Volume 42 (1981), pp. 991-1002 | DOI
[178] Organic superconductors: the family, Contemp. Phys., Volume 23 (1982) no. 6, pp. 583-624 | DOI
[179] Étude structurale du bromure de tétraméthyltétrathiafulvalène , Acta Cryst. B, Volume 34 (1978), pp. 620-624 | DOI
[180] Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system, Nature, Volume 525 (2015), pp. 73-76 | DOI
[181] Organic Superconductivity: A Mouse may be of Service to a Lion, Superconductivity in New Materials (Z. Fisk; H. R. Ott, eds.) (Contemporary Concepts of Condensed Matter Science), Volume 4, Elsevier, 2011, pp. 149-216 | DOI
[182] The Crystal and Molecular Structure of the Organic Conductor 2,3,6,7-Tetramethyl 1,4,5,8-tetraselenafulvalenium 2,5- Dimethyl- 7,7,8,8-tetracyano-p-quinodimethanide (TMTSF-DMTCNQ), Acta Cryst. B., Volume 34 (1978), pp. 1901-1905 | DOI
[183] The metallic state of the organic conductor TMTSF-DMTCNQ at low temperature under pressure, J. Physique Lett., Volume 40 (1979), pp. 381-383 | DOI
[184] Properties of the quasi-one-dimensional organic metal , Quasi One-Dimensional Conductors I, Volume 95, Springer-Verlag, 1979, p. 39
[185] Study of phase transitions in under pressure at low temperatures, Sov. Phys. JETP, Volume 47 (1978) no. 6, pp. 1170-1173
[186] Molecular Properties of the Molecules used in Conducting Organic Solids, The Physics and Chemistry of Low Dimensional Solids (L. Alcácer, ed.), Springer Netherlands: Dordrecht, 1980, pp. 247-263 | DOI
[187] Superconductivity in a synthetic organic conductor (TMTSF)PF, J. Physique Lett., Volume 41 (1980), pp. 95-98 | DOI
[188] Supraconductibilité dans un conducteur synthétique organique (TMTSF)PF, C. R. Hebd. Seances Acad. Sci. B, Volume 290 (1980) no. 2, pp. 27-30 (online at https://gallica.bnf.fr/ark:/12148/bpt6k54905962/f103.item.)
[189] X-ray evidence of charge density wave modulations in the magnetic phases of and , Synth. Met., Volume 85 (1997), pp. 1523-1528 | DOI
[190] Diamagnetic AC susceptibility in the quasi-one dimensional organic conductor : , J. Physique Lett. Paris, Volume 41 (1980), pp. 397-399 (https://hal.archives-ouvertes.fr/jpa-00231806) | DOI
[191] Observation of the Meissener effect in an Organic Superconductor, Phys. Rev. Lett., Volume 45 (1980), pp. 1449-1452 | DOI
[192] Magnetic properties of the organic conductor : a new phase transition, Phys. Rev. Lett., Volume 45 (1980), pp. 2125-2128 | DOI
[193] Restoration of Metallic Behavior in organic Conductors by Small Electric Fields, Phys. Rev. Lett., Volume 45 (1980), pp. 829-832 | DOI
[194] Spin-density wave ground state in the one-dimensional conductor (TMTSF)PF: microscopic evidence from Se and H NMR experiments, J. Physique Lett., Volume 42 (1981), pp. 87-90 | DOI
[195] Antiferromagnetic Ordering in the Organic Conductor his-Tetramethyltetraselenafulvalene-Hexafluorophosphate (TMTSF)PF, Phys. Rev. Lett., Volume 46 (1981) no. 18, p. 1234--1237 | DOI
[196] Magnetic Effects and the Hartree–Fock Equation, Phys. Rev., Volume 82 (1951), pp. 538-541 | DOI
[197] Electronic Structure of Chromium Group Metals, Proc. Phys. Soc.A, Volume 80 (1962), p. 489 | DOI
[198] Spin Density Waves in an Electron Gas, Phys. Rev., Volume 128 (1962), pp. 1437-1452 | DOI | Zbl
[199] Periodic lattice distortions and charge density waves in one-and two-dimensional metals, J. Phys. C: Solid State Phys., Volume 12 (1979), p. 1441 | DOI
[200] Pressure enhanced superconductivity and superlattice structures in transition metal dichalcogenide layer crystals, Phil. Mag, Volume 30 (1974), pp. 1091-1103 | DOI
[201] Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides, Adv. Phys., Volume 24 (1975), pp. 117-201 | DOI
[202] On the pressure Dependence of Superconductivity in transition metal Dichalcogenide layer Crystals, J. Phys. Lett., Volume 36 (1975), pp. 279-280 | DOI
[203] Pressure dependence of superconductivity in a organic superconductor (TMTSF)PF, Phys. Rev. Lett., Volume 45 (1980), pp. 1587-1590 | DOI
[204] The physics of organic superconductors, Science, Volume 252 (1991), pp. 1509-1514 | DOI
[205] Pressure dependence of the organic superconductivity in , J. Physique. Lett, Volume 42 (1981), pp. 51-54 | DOI
[206] Insulating, conducting and superconducting states of under pressure and magnetic field, J. Phys. I France, Volume 43 (1982), pp. 801-808 | DOI
[207] Organic Superconductors: a survey of low dimensional phenomena, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 511-538 | DOI
[208] From spin-Peierls to superconductivity: under high pressure, J. Phys. Cond. Matter, Volume 13 (2001), L89 | DOI
[209] Pressure-Induced Superconductivity in the Quasi-One-Dimensional Organic Conductor , J. Phys. Soc. Jpn., Volume 76 (2007) no. 5, 053703 | DOI
[210] Anomalously Wide Superconducting Phase of One-Dimensional Organic Conductor , J. Phys. Soc. Jpn., Volume 77 (2008) no. 2, 023701 | DOI
[211] Superconductivity in the family of organic salts based on the tetramethyltetraselenafulvalene (TMTSF) molecule: , J. Phys. C: Solid State Phys., Volume 14 (1981), p. 5305 | DOI
[212] Superconductivity in the Organic Charge Transfer Salts: (TMTTF)X and (TMTSF)X, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 605-615 | DOI
[213] Superconductivity and magnetic field induced spin density waves in the family, J. Phys. I France, Volume 4 (1994), pp. 1539-1549 | DOI
[214] A hidden low-temperature phase in the organic conductor , J. Phys.: Condens. Matter, Volume 1 (1989), p. 4451 | DOI
[215] et al. The case for universality of the phase diagram of the Fabre and Bechgaard salts, Eur. Phys. Jour. B, Volume 21 (2001), pp. 175-183 | DOI
[216] Superconducting Transition of (TMTTF)PF above 50 kbar, J. Am. Chem. Soc., Volume 122 (2000), pp. 3238-3239 | DOI
[217] Theory of the One-Dimensional Electron Gas, Highly Conducting One-Dimensional Solids (J. T. Devreese; R. E. Evrard; V. E. van Doren, eds.) (Physics of Solids and Liquids), Plenum Press, New York, 1979, pp. 247-303 | DOI
[218] The Fermi Gas model of one-dimensional conductors, Adv. Phys., Volume 28 (1979), pp. 201-303 | DOI
[219] Fermi liquids and non-Fermi liquids, Proceedings of Les Houches Summer School LXI (E. Akkermans; G. Montambaux; J. Pichard; J. Zinn-Justin, eds.), Elsevier, Amsterdam, 1995, p. 533 | DOI
[220] One-dimensional Fermi liquids, Rep. Prog. Phys., Volume 58 (1995), p. 977 | DOI
[221] Quantum Physics in One-Dimension, Clarendon Press, Oxford, 2003
[222] Electron-Electron Umklapp Scattering in Organic Superconductors, Phys. Rev. Lett., Volume 48 (1982), pp. 1039-1043 | DOI
[223] Recent Developments in Condensed Matter Physics (J. T. Devreese, ed.), 1, Plenum Press: New York, 1981
[224] Charge gap in the one-dimensional dimerized Hubbard model at quarter-filling, Phys. Rev. B, Volume 50 (1994), pp. 11429-11445 | DOI
[225] Band-structure parameters of a series of tetramethyltetraselenafulvalene (TMTSF)X compounds, Phys. Rev. B, Volume 26 (1982), pp. 6888-6895 | DOI
[226] Effect of doping with TMTTF I. Ambient pressure results: a competition between the different possible ground states, J. Phys. I France, Volume 43 (1982), pp. 1721-1729 | DOI
[227] Importance of one-dimensional correlations in the phase diagram of the salts, Physica B+C, Volume 143 (1986), pp. 453-455 | DOI
[228] On the theory of organic superconducting materials, Sov. Phys. JETP, Volume 62 (1985), pp. 1340-1352
[229] Umklapp process and resistivity in one-dimensional fermion systems, Phys. Rev. B, Volume 44 (1991), pp. 2905-2913 | DOI
[230] Electrical transport near quantum criticality in low dimensional organic superconductors, Phys. Rev. B, Volume 92 (2015), 195141 | DOI
[231] Mott transition in one dimension, Phys. B: Condens. Matter, Volume 230-232 (1997), pp. 975-980 | DOI
[232] Phase Diagram of the One-Dimensional Extended Hubbard Model at Quarter-Filling, Europhys. Lett., Volume 24 (1993), p. 133 | DOI
[233] Crossover from Quarter-Filling to Half-Filling in a One-Dimensional Electron System with a Dimerized and Quarter-Filled Band, J. Phys. Soc. Jpn., Volume 70 (2001), p. 1460--1463 | DOI
[234] Theoretical Framework for Quasi-One Dimensional Systems, Chem. Rev., Volume 104 (2004), pp. 5037-5056 | DOI
[235] High pressure study of the organic compound , Eur. Phys. J. B, Volume 67 (2009), pp. 43-49 | DOI
[236] Electronic Confinement in Organic Metals, Science, Volume 281 (1998), pp. 1155-1156 | DOI
[237] Temperature dependence of the transfer integrals in the and families, J. Phys. C: Solid State Phys., Volume 19 (1986), 3805 | DOI
[238] Synthesis Strategies and Chemistry of Nonsymmetrically Substituted Tetrachalcogenafulvalenes, Chem. Rev., Volume 104 (2004), pp. 5133-5150 | DOI
[239] A C NMR in study of the interplay between the Spin–Peierls and antiferromagnetic ground states of under pressure, Synth. Met., Volume 19 (1987), pp. 289-294 | DOI
[240] Scaling Relation between Nuclear Relaxation and Magnetic Susceptibility in Organic Conductors: Evidence for 1D Paramagnon Effects, Phys. Rev. Lett., Volume 62 (1989), p. 1532 | DOI
[241] Nuclear relaxation and electronic correlations in quasi-one-dimensional organic conductors. II. Experiments, J. Phys. I France, Volume 3 (1993), pp. 171-201 | DOI
[242] X-Ray Diffuse Scattering Study of Some (TMTSF)X and (TMTTF)XSalts, Mol. Cryst. Liq. Cryst., Volume 79 (1982), p. 129 | DOI
[243] Longitudinal and transverse transport of the quasi-one dimensional organic conductor (TMTTF)PF studied under high pressure, J. Phy. IV France, Volume 114 (2004), pp. 41-44 | DOI
[244] New Mechanisms for Phase Transitions in Quasi-One-Dimensional Conductors, Europhys. Lett., Volume 5 (1988), p. 209 | DOI
[245] Electronic Structure of the Charge Transfer Salts of TMTCF, J. Phys. Colloques, Volume 44 (1983), pp. 847-857 | DOI
[246] Organic Conductors: From Charge Density Wave TTF-TCNQ to Superconducting , Chem. Rev., Volume 104 (2004), pp. 5565-5592 | DOI
[247] On-chain electrodynamics of metallic salts: Observation of Tomonaga–Luttinger liquid response, Phys. Rev. B, Volume 58 (1998), pp. 1261-1271 | DOI
[248] Dimensionality-Driven Insulator-to-Metal Transition in the Bechgaard salts, Science, Volume 281 (1998), pp. 1181-1184 | DOI
[249] Transport and Optics in Quasi-One-Dimensional Organic Conductors, J. Phys. Soc. Jpn., Volume 75 (2006), 051004 | DOI
[250] Deconfinement Transition and Luttinger to Fermi Liquid Crossover in Quasi-One-Dimensional Systems, Phys. Rev. Lett., Volume 87 (2001), 276405 | DOI
[251] Transverse transport in (TM)X organic conductors: possible evidence for a Luttinger liquid, Eur. Phys. Jour. B, Volume 1 (1998), pp. 39-46 | DOI
[252] Se NMR Spin-Lattice relaxation rate properties in the series under pressure: cooperative phenomena and SDW Transition, Synth. Met., Volume 19 (1987), pp. 277-282 | DOI
[253] Cristallographic structures of under constraints: evidence of a change in the electronic structure, Synth. Met., Volume 19 (1987), pp. 321-326 | DOI
[254] The normal phase of quasi-one-dimensional organic superconductors, Advances in Synthetic Metals: Twenty Years of Progress in Science and Technology (P. Bernier; S. Lefrant; G. Bidan, eds.), Elsevier, 1999, pp. 206-261
[255] Non Fermi-Liquid features in (TM) 1-D Conductors from transport properties, Proceedings of the Physical Phenomena at High Magnetic Fields-III (Z. Fisk; L. Gorkov; R. Schrieffer, eds.), World Scientific: Singapore, 1999, p. 211-+
[256] Charge Ordering in the TMTTF Family of Molecular Conductors, Phys. Rev. Lett., Volume 85 (2000), pp. 1698-1701 | DOI
[257] Dielectric response of the charge-induced correlated state in the quasi-one-dimensional conductor, Phys. Rev. B, Volume 62 (2000), pp. 1753-1756 | DOI
[258] Ferroelectric Mott–Hubbard Phase of Organic (TMTTF)X Conductors, Phys. Rev. Lett., Volume 86 (2001), pp. 4080-4083 | DOI
[259] Cooperative phenomena in (TMTSF)ClO: an NMR evidence, J. Physique Lett., Volume 45 (1984), pp. 755-765 | DOI
[260] The influence of chemical impurities and X-ray induced defects on the single-particle and spin-density wave conductivity in the Bechgaard salts, J. Phys. I France, Volume 1 (1991), pp. 1603-1625 | DOI
[261] Unconventional Electrodynamic Response of the Quasi One Dimensional Organic Conductor , J. Phys. I France, Volume 6 (1996), pp. 1719-1726 | DOI
[262] Anisotropic electrodynamics of low dimensional metals: Optical studies of (TMTSF)ClO, Eur. Phys. J. B, Volume 11 (1999), pp. 365-368 | DOI
[263] Conductivity between Luttinger Liquids in the Confinement Regime and c-Axis Conductivity in the Cuprate Superconductors, Phys. Rev. Lett., Volume 74 (1995), pp. 4499-4502 | DOI
[264] Deviations from Drude Response in Low-Dimensional Metals: Electrodynamics of the Metallic State of , Phys. Rev. Lett., Volume 77 (1996), pp. 398-401 | DOI
[265] Dimensionality Crossover in the Organic Superconductor Tetramethyltetraselenafulvalene Hexafluorophosphate , Phys. Rev. Lett., Volume 46 (1981), pp. 1142-1145 | DOI
[266] Electrodynamics of Bechgaard Salts: Optical Properties of One-Dimensional Metals, ISRN Condensed Matter Physics, Volume 2012 (2012), 732973 | DOI
[267] Interchain conductivity of coupled Luttinger liquids and organic conductors, Phys. Rev. B, Volume 61 (2000), pp. 16393-16396 | DOI
[268] A genuine quarter-filled band Mott insulator, : where the chemistry and Physics of weak intermolecular interactions act in unison, Adv. Mater., Volume 15 (2003), pp. 1251-1254 | DOI
[269] Singular Behavior in the Pressure-Tuned Competition between Spin–Peierls and Antiferromagnetic Ground States of , Phys. Rev. Lett., Volume 81 (1998), pp. 3984-3987 | DOI
[270] Charge ordering, symmetry and electronic structure issues and Wigner crystal structure of the quarter-filled band Mott insulators and high pressure metals and , Journal of Materials Chemistry, Volume 19 (2009), pp. 6980-6994 | DOI
[271] Phase Diagram of Quarter-Filled Band Organic Salts , X and Br, Phys. Rev. Lett., Volume 102 (2009), 255001 | DOI
[272] Zero-Pressure Organic Superconductor , Phys. Rev. Lett., Volume 46 (1981), pp. 852-855 | DOI
[273] Superconductivity in an Organic Solid. Synthesis, Structure, and Conductivity of Bis(tetramethyltetraselenafulva1enium) Perchlorate, , J. Am. Chem. Soc, Volume 103 (1981), pp. 2440-2442 | DOI
[274] The Structure of the First Superconducting Organic Solid, Acta Cryst. B, Volume 37 (1981), pp. 1236-1240 | DOI
[275] Development of Uniaxial Elongation Method and Its Application to Low Dimensional Conductors, J. Phys. Soc. Jpn., Volume 76 (2007), 114710 | DOI
[276] Temperature dependence of the Fermi surface topography in the and families, J. Phys. C: Solid State Phys., Volume 18 (1985), L947 | DOI
[277] Theory of Anion ordering in TMTSF Compounds, J. Phys. Colloques, Volume 44 (1983) no. C3, pp. 1115-1120 | DOI
[278] Some basic Questions in organic Superconductivity, J. Phys. Colloques, Volume 44 (1983), pp. 977-982 | DOI
[279] X-ray evidence of a structural transition in pristine and slightly doped, Phys. Rev. B, Volume 27 (1983), pp. 5203-5206 | DOI
[280] Observation of a magnetic state in the organic superconductor : influence of the cooling rate, J. Physique Lett., Volume 43 (1982), pp. 565-573 | DOI
[281] Talk at the University of Lille, 1854 (https://innovationetserendipite.files.wordpress.com/2011/01/discours-de-louis-pasteur.pdf)
[282] Anion-Ordering Phase Diagram of Di(tetramethyltetraselenafulvalenium) Perrhenate, (TMTSF)ReO, Phys. Rev. Lett., Volume 57 (1986), pp. 1915-1918 | DOI
[283] Pressure dependence of the metal-insulator and superconducting phase transitions in (TMTSF)ReO, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 569-580 | DOI
[284] Magnetic susceptibility and resistive transitions of superconducting (TMTSF)ClO: critical fields, Phys.Rev.B, Volume 24 (1981), pp. 478-480 | DOI
[285] Resistivity of the organic superconductor in its relaxed, quenched, and intermediate state, Phys. Rev. B, Volume 29 (1984), pp. 500-502 | DOI
[286] Resistive and Magnetic Susceptibility Transitions in Superconducting (TMTSF)ClO, Mol. Cryst. Liq. Cryst., Volume 79 (1982), pp. 581-590 | DOI
[287] Magnetic Determination of Hc2 under Accurate Alignment in (TMTSF)ClO, Phys. Rev. Lett., Volume 92 (2004), 067001 | DOI
[288] Specific heat measurements of organic superconductivity in , J. Physique Lett., Volume 43 (1982), pp. 147-152 | DOI
[289] Anisotropy of the Meissner effect and the diamagnetic shielding in , J. Physique Lett., Volume 43 (1982), pp. 711-717 | DOI
[290] Nodal superconducting order parameter and thermodynamic phase diagram of (TMTSF)ClO, Phys. Rev. B, Volume 85 (2012), 140502R | DOI
[291] Back to the problem of the upper critical fields in organic superconductors, J. Physique Lett., Volume 46 (1985), pp. 643-646 | DOI
[292] Crossover from impurity-controlled to granular superconductivity in (TMTSF)ClO, Phys. Rev. B, Volume 97 (2018), 014521 | DOI
[293] Organic Superconductors, Springer Series in Solid-State Sciences, 88, Springer, Heidelberg, 1998 | DOI
[294] Upper critical field of the anisotropic organic superconductors, , Jpn. J. Appl. Phys., Volume 26 (1987) no. S3-2, pp. 1367-1368 | DOI
[295] Anisotropy of the Upper Critical Field in , Phys. Rev. Lett., Volume 78 (1997), pp. 3555-3558 | DOI
[296] Exceeding the Pauli paramagnetic limit in the critical field of , Phys. Rev. B, Volume 62 (2000), p. R14669-R14672 | DOI
[297] Revisiting the Superconducting Phase Diagram of , Synthetic Metals, Volume 70 (1995), pp. 747-750 | DOI
[298] Magnetic-Field Variations of the Pair-Breaking Effects of Superconductivity in (TMTSF)ClO, J. Phys. Soc. Jpn., Volume 77 (2008), 054712 | DOI
[299] Anomalous In-Plane Anisotropy of the Onset of Superconductivity in (TMTSF)ClO, Phys. Rev. Lett., Volume 100 (2008), 117002 | DOI
[300] Upper limit for the critical field in hard superconductors, Phys. Rev. Lett., Volume 9 (1962), pp. 266-267 | DOI
[301] Consequences of resonant impurity scattering in anisotropic superconductors: Thermal and spin relaxation properties, Phys. Rev. B, Volume 37 (1988), pp. 83-97 | DOI
[302] Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts, C. R. Physique, Volume 17 (2016), pp. 357-375 | DOI
[303] Superconducting State of the Organic Conductor , Phys. Rev. Lett., Volume 98 (2007), 147002 | DOI
[304] Review of U-based ferromagnetic superconductors: comparaison betwen , and , J. Phys. Soc. Jpn., Volume 88 (2018), 022001 | DOI
[305] Proton spin lattice relaxation in the superconducting state of , J. Phys. Soc. Jpn., Volume 56 (1987), pp. 873-876 | DOI
[306] NMR rexation time of anisotropic superconding state in quasi-one dimensional systems, J. Phys. Soc. Jpn., Volume 56 (1987), pp. 877-880 | DOI
[307] Triplet Superconductivity in an Organic Superconductor Probed by NMR Knight Shift, Phys. Rev. Lett., Volume 88 (2002), 017004 | DOI
[308] Superconductivity in a Strong Spin-Exchange Field, Phys. Rev., Volume 135 (1964), p. A550-A563 | DOI
[309] Nonuniform State of Superconductors, Sov. Phys. JETP, Volume 20 (1965) no. 3, p. 762-+
[310] Magnetic Field Induced Confinement in Strongly Correlated Anisotropic Materials, Phys. Rev. Lett., Volume 73 (1994), pp. 1007-1010 | DOI
[311] Field-induced confinement in under accurately aligned magnetic fields, Eur. Phys. B, Volume 52 (2006), pp. 337-343 | DOI
[312] Reversible nature of the orbital mechanism for the suppression of superconductivity, JETP Lett., Volume 44 (1986) no. 2, pp. 114-117
[313] On the Origin of the Anomalous Upper Critical Field in Quasi-One-Dimensional Superconductors, Eur. Phys. Lett., Volume 100 (2012), 57008 | DOI
[314] Dimensional Crossover of the Fulde–Ferrell–Larkin–Ovchinnikov State in Strongly Pauli-Limited Quasi-One-Dimensional Superconductor, J. Phys. Soc. Jpn., Volume 83 (2014), 024703 | DOI
[315] Fulde–Ferrell–Larkin–Ovchinnikov State in Heavy Fermion Superconductors, J. Phys. Soc. Jpn., Volume 76 (2007), 051005 | DOI
[316] Absence of a Spin Gap in the Superconducting Ladder Compound SrCaCuO, Science, Volume 279 (1998), pp. 345-348 | DOI
[317] et al. Upper critical field of the spin ladder system , Solid State Comm., Volume 114 (2000), pp. 533-536 | DOI
[318] Magnetic field effect on the pressure-induced superconducting state in the hole-doped two-leg ladder compound SrCaCuO, Phys. Rev. B, Volume 72 (2005), 054520 | DOI
[319] Zeeman Effect in Superconducting Two-Leg Ladders: Irrational Magnetization Plateaus and Exceeding the Pauli Limit, Phys. Rev. Lett., Volume 97 (2006), 087207 | DOI
[320] The effect of impurities on Fulde–Ferrell–Larkin–Ovchinnikov superconductors, J. Phys.: Condens. Matter, Volume 13 (2001), pp. 9259-9270 | DOI
[321] Superconducting and density-wave instabilities of low-dimensional conductors with a Zeeman coupling to a magnetic field, Phys. Rev. B, Volume 95 (2017) no. 16, 165111 | DOI
[322] Theory of dirty Superconductors, J. Phys. Chem. Solids, Volume 11 (1959), pp. 26-30 | DOI | Zbl
[323] Contribution to the theory of superconducting alloys with paramagnetic impurities, Sov. Phys. JETP, Volume 12 (1961) no. 6, pp. 1243-1253
[324] Quasiparticle spectrum of the hybrid s+g-wave superconductors and , Phys. Rev. B, Volume 69 (2004), 012502 | DOI
[325] The superconductivity of and the physics of spin-triplet pairing, Reviews of Modern Physics, Volume 75 (2003), pp. 657-712 | DOI
[326] Evaluation of Spin-Triplet Superconductivity in , J. Phys. Soc. Jpn., Volume 81 (2012), 011009 | DOI
[327] Low-temperature metallic state and superconductivity in quasi-one-dimensional organic conductors: pressure and irradiation investigations, J. Phys. C: Solid State Phys., Volume 15 (1982), pp. 2951-2964 | DOI
[328] Effect of radiation damage on the metal-insulator transition and low temperature transport in the salt, Phys. Rev. B, Volume 25 (1982), pp. 6208-6217 | DOI
[329] Superconductivity in a quasi-one-dimensional metal with impurities, J. Low Temp. Phys., Volume 53 (1983), pp. 359-374 | DOI
[330] Low temperature magnetic susceptibility of quasi one-dimensional conductors, J. Physique, Volume 41 (1980), pp. 639-646 | DOI
[331] The spin density wave collective mode in , Ph. D. Thesis, Université Paris-Sud – Paris XI, Orsay (France) (1993)
[332] Impurity-controlled superconductivity spin density wave interplay in the organic superconductor: , Eur. Phys. Lett., Volume 72 (2005), pp. 645-651 | DOI
[333] Suppression of superconductivity by non-magnetic disorder in the organic superconductor , Eur. Phys. J. B, Volume 40 (2004), pp. 43-48 | DOI
[334] Linear-T scattering and pairing from antiferromagnetic fluctuations in the organic superconductors, Eur. Phys. Jour. B, Volume 78 (2010), pp. 23-36 | DOI
[335] Fluctuating spin density wave conduction in organic superconductors, Eur. Phys. Lett., Volume 94 (2011), 17002 | DOI
[336] Impurity effects in d-wave superconductors, Phys. Rev. B, Volume 51 (1995), pp. 6059-6063 | DOI
[337] et al. Anion disorder and two-dimensionality in the superconducting and SDW states of , J. Low Temp. Phys., Volume 117 (1999), pp. 1735-1739 | DOI
[338] Quenching Effect on the Anion Ordering in the Organic Superconductor (TMTSF)ClO: An X-ray study, Solid State Comm., Volume 46 (1983), pp. 867-870 | DOI
[339] X-ray study of the anion ordering transition in (TMTSF)ClO: quenching and irradiation effects, J. Phys. I France, Volume 46 (1985), pp. 1521-1532 | DOI
[340] High resolution x-ray scattering study of the anion ordering phase transition of , J. Phys. Soc. Jpn., Volume 59 (1990) no. 6, pp. 2036-2053 | DOI
[341] Superconductivity of metals and alloys, CRC Press: Boca Raton, 2019 | DOI
[342] Percolation description of granular superconductors, Phys. Rev. B, Volume 21 (1980), pp. 5041-5047 | DOI
[343] Impurity scattering in d-wave superconductivity. Unitarity limit versus Born limit, Eur. Phys. J. B, Volume 4 (1998), pp. 191-194 | DOI
[344] Thermodynamic properties of impure anisotropic quasi-one-dimensional superconductors, Phys. Rev. B, Volume 39 (1989), pp. 11398-11405 | DOI
[345] Density of states in unconventional superconductors: Impurity-scattering effects, Phys. Rev. B, Volume 50 (1994), pp. 1259-1263 | DOI
[346] Triplet Superconducting Pairing and Density-Wave Instabilities in Organic Conductors, Phys. Rev. Lett., Volume 95 (2005), 247001 | DOI
[347] Nodal Structures of Heavy Fermion Superconductors Probed by the Specific-Heat Measurements in Magnetic Fields, J. Phys. Soc. Jpn., Volume 76 (2007), 051004, 247001 | DOI
[348] Sign Reversal of Field-Angle Resolved Heat Capacity Oscillations in a Heavy Fermion Superconductor CeCoIn and Pairing Symmetry, Phys. Rev. Lett., Volume 104 (2010), 037002, 051004 | DOI
[349] Superconducting Gap Structure of Probed by Thermal Conductivity Tensor, Phys. Rev. Lett., Volume 88 (2002), 027002, 037002 | DOI
[350] Low Energy Quasiparticle Excitation in the Vortex State of Borocarbide Superconductor , Phys. Rev. Lett., Volume 86 (2001), 027002, pp. 1327-1330 | DOI
[351] Gap structure of the spin-triplet superconductor SrRuO determined from the field orientation dependence of the specific heat, Phys. Rev. Lett., Volume 92 (2004), 047002 | DOI
[352] Superconductivity with lines of gap nodes:density of states in the vortex, JETP Lett., Volume 58 (1993) no. 6, 047002, pp. 457-461
[353] Fermionic entropy of the vortex state in -wave superconductors, JETP Lett., Volume 65 (1997), pp. 491-496 | DOI
[354] Anisotropic thermodynamics of -wave superconductors in the vortex state, Phys. Rev. B, Volume 59 (1999), p. R9023-R9026 | DOI
[355] Extended analysis of the field-angle-dependent heat capacity of (TMTSF)ClO toward identification of the superconducting gap structure, J. Phys. Conf. Ser., Volume 449 (2013), 012032 | DOI
[356] Temperature and pressure dependencies of the crystal structure of the organic superconductor , Eur. Phys. J. B, Volume 19 (2001), 012032, pp. 363-373 | DOI
[357] Superconducting Gap Function in an Organic Superconductor (TMTSF)ClO with Anion Ordering; First-principles Calculations and Quasi-classical Analyses for Angle-resolved Heat Capacity, Phys. Rev. B, Volume 83 (2011), 104523 | DOI
[358] Cooperative phenommena in NMR relaxation, Mol. Cryst. Liq. Cryst., Volume 119 (1985), 104523, pp. 45-51 | DOI
[359] Superconductivity and antiferromagnetism as interfering orders in organic conductors, Comptes Rendus Physique, Volume 12 (2011), pp. 532-541 | DOI
[360] Se NMR probe of magnetic excitations of the magic angle effect in , Phys. Rev. Lett., Volume 94 (2005), 097004 | DOI
[361] La tour des sels de Bechgaard, The Physics of Organic Superconductors and Conductors (A. G. Lebed, ed.), Springer, Heidelberg, 2008, 097004, pp. 49-87 | DOI
[362] Spin fluctuations and high temperature superconductivity, Adv. Phys., Volume 49 (2000), pp. 555-606 | DOI
[363] Link between antiferromagnetism and superconductivity probed by nuclear spin relaxation in organic conductors, Phys. Rev. B, Volume 80 (2009), 085105 | DOI
[364] Correlation between non-Fermi-liquid behavior and antiferromagnetic fluctuations in observed using C NMR spectroscopy, Phys. Rev. B, Volume 84 (2011), 045123, 085105 | DOI
[365] Correlation between linear resistivity and in the Bechgaard salts and the pnictide superconductor , Phys. Rev. B, Volume 80 (2009), 214531, 045123 | DOI
[366] The metallic transport of (TM)X organic conductors close to the superconducting phase, J. Phys.: Condens. Matter, Volume 23 (2011), 345702, 214531 | DOI
[367] Effect of Fluctuations on the properties of a Superconductor above the critical Temperature, Sov. Phys. Solid State, Volume 10 (1968), 345702, pp. 875-898 | DOI
[368] Conductivity from charge or spin density waves, Solid State Comm., Volume 14 (1974), pp. 703-709 | DOI
[369] NMR incommensurate and incommesurate spin density waves, Europhys. Lett, Volume 21 (1993), pp. 87-92 | DOI
[370] The dynamics of spin density waves, Rev. Mod. Phys., Volume 66 (1994), pp. 1-24 | DOI
[371] Nuclear relaxation and electronic correlations in quasi-one dimensional organic conductors. I. Scaling theory, J. Phys. I France, Volume 3 (1993), pp. 143-169 | DOI
[372] Roles of multiband effects and electron hole asymmetry in the superconductivity and normal properties of , Phys. Rev. B, Volume 80 (2009), 140508 | DOI
[373] Link between spin fluctuations and electron pairing in copper oxide superconductors, Nature, Volume 476 (2011), 140508, pp. 73-75 | DOI
[374] Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors, Phys. Rev. B, Volume 73 (2006), 165126 | DOI
[375] Interplay between spin-density-wave and superconducting states in quasi-one-dimensional conductors, Eur. Phys. J. B, Volume 21 (2001), 165126, pp. 219-228 | DOI
[376] The Mechanisms of Organic Superconductivity, Synth. Met., Volume 13 (1986), p. 21 | DOI
[377] Possible superconductivity in nearly antiferromagnetic itinerant fermion systems, Phys. Rev. B, Volume 34 (1986), pp. 7716-7720 | DOI
[378] -wave pairing near a spin-density-wave instability, Phys. Rev. B, Volume 34 (1986), pp. 8190-8192 | DOI
[379] Interfering antiferromagnetism and superconductivity in quasi-one-dimensional organic conductors, Physica B, Volume 405 (2009), p. S89-S91 | DOI
[380] Extended quantum criticality of low-dimensional superconductors near a spin-density-wave instability, Phys. Rev. B, Volume 85 (2012), 165129 | DOI
[381] Role of electron-phonon interaction in a magnetically driven mechanism for superconductivity, Phys. Rev. B, Volume 90 (2014), 125119, 165129 | DOI
[382] Coexistence of superconductivity and spin density wave orderings in the organic superconductor , Eur. Phys. J. B, Volume 25 (2002), 125119, pp. 319-331 | DOI
[383] Critical Field Enhancement near a Superconductor-Insulator Transition, Phys. Rev. Lett., Volume 88 (2002), 207002 | DOI
[384] Superconductivity coexisting with phase-separated static magnetic order in , and , Phys. Rev. B, Volume 80 (2009), 024508, 207002 | DOI
[385] Muon spin relaxation studies of unconventional superconductors: first-order behavior and comparable spin-charge energy scales, Springer Series in Solid-State Sciences, 180, Springer (2015), 024508, pp. 237-267 | DOI
[386] Molecular quantum materials: electronic phases and charge dynamics in two-dimensional organic solids, Adv. Phys., Volume 69 (2020), pp. 1-120 | DOI
[387] Two-dimensionality and suppression of metal-semiconductor transition in a new organic metal with Alkylthio substituted TTF and perchlorate, Solid State Comm., Volume 42 (1982) no. 8, pp. 557-560 | DOI
[388] Superconductivity in a New Family of Organic Conductors, Phys. Rev. Lett., Volume 50 (1983) no. 4, pp. 270-273 | DOI
[389] Effect of pressure on the superconductivity of , JETP Lett., Volume 41 (1985) no. 2, pp. 81-84
[390] Pressure phase diagram of the organic superconductor , J. Phys. Soc. Jpn., Volume 54 (1985), pp. 2084-2087 | DOI
[391] Homogeneous superconducting state at 8.1 K under ambient pressure ion the organic conductor , J. Physique Lett., Volume 46 (1988), pp. 1079-1085 | DOI
[392] Superconducting Properties of the Orthorhombic Phase of Bis-(ethylenedithiolo)tetrathiofulvalene Triiodide, JETP Lett., Volume 39 (1984) no. 6, pp. 328-332
[393] Observation of Giant Magnetoresistance Oscillations in the High- Phase of the Two-Dimensional Organic Conductor -(BEDT-TTF)I, Phys. Rev. Lett., Volume 62 (1989), pp. 2559-2562 | DOI
[394] Anisotropy of Magnetoresistance and Shubnikov–De Haas oscillations in the Organic Metal Beta-, JETP Lett., Volume 48 (1988) no. 9, pp. 541-544
[395] On the angle dependence of the magnetoresistance in quasi-two-dimensional organic superconductors, J. Phys. Soc. Jpn., Volume 58 (1989), pp. 1520-1523 | DOI
[396] A New Ambient Pressure Organic Superconductor Based on BEDT-TTF with T Higher than 10K (TK), Chem. Lett., Volume 17 (1988), pp. 55-58 | DOI
[397] A New Ambient-Pressure Organic Superconductor, , with the Highest Transition Temperature Yet Observed (Inductive Onset T K, Resistive Onset=12. K, Inorg. Chem., Volume 29 (1990), pp. 2555-2557 | DOI
[398] From Semiconductor-Semiconductor Transition (42 K) to the Highest- Organic Superconductor, , Inorg. Chem., Volume 29 (1990), pp. 3272-3274 | DOI
[399] Mott Transition, Antiferromagnetism, and Unconventional Superconductivity in Layered Organic Superconductors, Phys. Rev. Lett., Volume 85 (2000) no. 25, pp. 5420-5423 | DOI
[400] Mott Transition and Transport Crossovers in the Organic Compound , Phys. Rev. Lett., Volume 91 (2003), 016401 | DOI
[401] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), 016401, pp. 13-125 | DOI
[402] Superconducting state of (ET)Cu(N(CN))Br studied by 13C NMR: Evidence for vortex-core-induced nuclear relaxation and unconventional pairing, Phys. Rev. Lett., Volume 75 (1995), pp. 4122-4125 | DOI
[403] NMR relaxation rate in the superconducting state of the organic conductor NMR relaxation rate in the superconducting state of the organic conductor , Phys. Rev. B, Volume 54 (1996), pp. 76-79 | DOI
[404] Transport studies at the Mott transition of the two-dimensional organic metal , Eur. Phys. J. B, Volume 79 (2011), pp. 383-390 | DOI
[405] Transport Properties of Organic Superconductors, Physica C Supercond., Volume 235 (1994), pp. 2467-2468 | DOI
[406] High superconducting states in organic metals , Jpn. J. Appl. Phys., Volume 26-3 (1987), pp. 1977-1982 | DOI
[407] Mott Transition, Compressibility Divergence and the P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation, Phys. Rev. Lett., Volume 90 (2003), 127002 | DOI
[408] Transport criticality of the first-order Mott transition in the quasi-two-dimensional organic conductor , Phys. Rev. B, Volume 69 (2004), 064511, 127002 | DOI
[409] C NMR Study of a Quasi-Two Dimensional Organic Superconductor , Eur. Phys. Lett., Volume 28 (1994), 064511, pp. 205-210 | DOI
[410] Metal-Insulator transition investigation in by nuclear magnetic resonance and relaxation, Solid State Comm., Volume 13 (1973), pp. 1125-1129 | DOI
[411] Unconventional critical behaviour in a quasi-twodimensional organic conductor, Nature, Volume 436 (2005), pp. 534-537 | DOI
[412] Universality and Critical Behavior at the Mott Transition, Science, Volume 302 (2003), pp. 89-92 | DOI
[413] et al. NMR study of layered organic superconductors based on BEDT-TTF molecules, Physical Review Letters, Volume 74 (1995), pp. 3455-3458 | DOI
[414] Metal-Insulator Transition in , Phys. Rev. B, Volume 2 (1970) no. 9, pp. 3734-3750 | DOI
[415] Critical Behavior of the Mott Transition in Cr-Doped VO, Phys. Rev. B, Volume 2 (1970) no. 9, pp. 3751-3756 | DOI
[416] The transition to the metallic state, Phil. Mag, Volume 6 (1961), pp. 287-309 | DOI
[417] The Metal-non-Metal Transition, J. Phys. Colloques, Volume 32 (1971) no. C1, pp. 11-14 | DOI
[418] Ultra-High-Field Superconductivity, Phys. Rev. Lett., Volume 9 (1962), pp. 290-292 | DOI
[419] Magnetic-field-induced superconductivity in a two-dimensional organic conductor, Nature, Volume 410 (2001), pp. 908-910 | DOI
[420] Superconductivity in an Organic Insulator at Very High Magnetic Fields, Phys. Rev. Lett., Volume 87 (2001), 067002 | DOI
[421] Modern History of Organic Conductors: An Overview, Crystals, Volume 11 (2021), 838, 067002 | DOI
[422] Metal-Insulator Transitions, Taylor and Francis, London, 1974, 838
[423] Electrically Conducting Metal Dithiolate-Perylene Complexes, J. Phys. Chem., Volume 78 (1974) no. 3, pp. 215-217 | DOI
[424] et al. Synthesis, structure and preliminary results on electrical and magnetic properties of (Perylene) [Pt(mnt)], Solid State Comm., Volume 35 (1980), pp. 945-949 | DOI
[425] Evolution of superconductivity from a charge-density-wave ground state in pressurized (Per)Au(mnt), Eur. Phys. Lett., Volume 85 (2009), 27009 | DOI
[426] Magnetic field dependence of the metal-insulator transition in and , Solid State Comm., Volume 6 (1991), 27009, pp. 391-394 | DOI
[427] Nuclear and electronic resonance approaches to magnetic and lattice fluctuations in the two-chain family of organic compounds , Phys. Rev. B, Volume 44 (1991), pp. 641-651 | DOI
[428] Electrical conductivity and x-ray diffuse scattering study of the family of organic conductors , , J. Phys. C: Solid State Phys., Volume 17 (1984), 5197 | DOI
[429] Quantum interference in the quasi-one-dimensional organic conductor (Per)Pt(mnt), Phys. Rev. B, Volume 75 (1997), 255101, 5197 | DOI
[430] Electronic band structure of compounds, Eur. Phys. J. B, Volume 42 (2004), 255101, pp. 453-456 | DOI
[431] Superconductivity close to the charge-density-wave instability, Eur. Phys. J. B, Volume 90 (2010), p. 27001 | DOI
[432] Highly Conducting Charge-Transfer Compounds of Tetrathiafulvalene and Transition Metal-dmit-Complexes, J. Am. Chem. Soc, Volume 108 (1986), pp. 1908-1916 | DOI
[433] Un nouveau type de supraconducteur moléculaire: , C. R. Acad. Sci. II, Volume 302 (1986) no. 5, pp. 205-210 (online at https://gallica.bnf.fr/ark:/12148/bpt6k6296984t/f219.item)
[434] Anion arrangement in a new molecular superconductor, , , Chem. Lett., Volume 15 (1986), pp. 2017-2020 | DOI
[435] Pressure induced superconductivity in molecular , J. Phys. I France, Volume 50 (1989), pp. 1521-1534 | DOI
[436] Structural Evidence of Charge Density Waves in the Series of Molecular Conductors and Superconductors: , Eur. Phys. Lett., Volume 9 (1989), pp. 391-396 | DOI
[437] On the band electronic structure of molecular conductors and superconductors, J. Phys. I France, Volume 50 (1989), pp. 2967-2981 | DOI
[438] Charge density wave and metallic state coexistence in the multiband conductor , Phys. Rev. B, Volume 90 (2014), 205132 | DOI
[439] SIESTA code, 205132 (For more information on the SIESTA code visit: http://Sicmab.cat/leem/siesta)
[440] Simultaneous competition and coexistence between charge density waves and reentrant superconductivity in the pressure-temperature phase diagram of the molecular conductor , Phys. Rev. B, Volume 42 (1990), pp. 3935-3943 | DOI
[441] Coexistence of Metallic Character and Charge Density Wave on Stacks in , Eur. Phys. Lett., Volume 12 (1990), p. 267 | DOI
[442] Charge density waves in layer structures: A NMR study on a 2H- single Crystal, Solid State Comm., Volume 19 (1976), pp. 131-135 | DOI
[443] Evidence for a connection between charge density Waves and the pressure enhancement of superconductivity in —, Solid State Comm., Volume 18 (1976), pp. 1393-1395 | DOI
[444] Single-Component Molecular Metals with Extended-TTF Dithiolate Ligands, Chem. Rev., Volume 104 (2004), pp. 5243-5264 | DOI
[445] Single-Component Molecular Conductors — Multi-Orbital Correlated Electron Systems, Bull. Chem. Soc. Jpn, Volume 94 (2021), pp. 2540-2562 | DOI
[446] Crystal structures and physical properties of single-component molecular conductors consisting of nickel and gold complexes with bis(trifluoromethyl) tetrathiafulvalenedithiolate ligands, J. Mater. Chem, Volume 15 (2005), pp. 155-163 | DOI
[447] A Three-Dimensional Synthetic Metallic Crystal Composed of Single-Component Molecules, Science, Volume 291 (2001), pp. 285-287 | DOI
[448] A Single-Component Molecular Superconductor, J. Am. Chem. Soc, Volume 136 (2014), pp. 7619-7622 | DOI
[449] Molecular design and development of single-component molecular metals, J. Mater. Chem, Volume 11 (2001), pp. 2078-2088 | DOI
[450] The Physics of Organic Superconductors and Conductors, Springer Series in Materials Science, 110, Springer-Verlag, Berlin, 2008 | DOI
[451] Low-field and anomalous high-field Hall effect in , J. Physique Lett., Volume 44 (1982), pp. 953-961 | DOI
[452] Magnetoresistance study of low-dimensional electrons in the Bechgaard salts, Curr Appl Phys., Volume 4 (2004), pp. 263-266 | DOI
[453] Contribution à l’étude des conducteurs quasi-unidimensionnels sous champ magnétique, Ph. D. Thesis, Université Paris-Sud, Orsay (France) (1985)
[454] Sign Reversal of the Quantum Hall Number in , Phys. Rev. Lett., Volume 75 (1995) no. 10, pp. 2000-2003 | DOI
[455] Quantized Hall effect and a New Field-Induced Phase Transition in the Organic Superconductor , Phys. Rev. Lett., Volume 65 (1989), pp. 1984-1987 | DOI
[456] Quantum Hall effect in a bulk crysal, Phys. Rev. Lett., Volume 63 (1989), pp. 1988-1991
[457] Electronic States below 5K IN , Mol. Cryst. Liq. Cryst., Volume 119 (1985), pp. 91-95 | DOI
[458] et al. Hall effect study of the field-induced instabilities in (TMTSF)PF under pressure, J. Phys. C: Solid State Phys, Volume 19 (1986), p. 4483 | DOI
[459] Negative Hall plateaus and quantum Hall effect in , Phys. Rev. B, Volume 59 (1999), pp. 9814-9817 | DOI
[460] Stability of the spin density wave phases in : quantized nesting effect, J. Physique Lett., Volume 45 (1984), pp. 943-952 | DOI
[461] Spin Susceptibility of the Two-Dimensional Electron Gas with Open Fermi Surface under Magnetic Field, Phys. Rev. Lett., Volume 55 (1985), pp. 2078-2081 | DOI
[462] Susceptibility and instability of the Q1D electron gas under magnetic field, Low dimensional Conductors and Superconductors (D. Jerome; L. G. Caron, eds.), Plenum Press: New York, 1986, pp. 233-242
[463] The quantum Hall effect in Q1D conductors, Synthetic Metals, Volume 86 (1997), pp. 2235-2240 | DOI
[464] Sign Reversals of the Quantum Hall Effect in Quasi-1D Conductors, Phys. Rev. Lett., Volume 77 (1996), pp. 366-369 | DOI
[465] Rapid magnetic oscillations and magnetic breakdown in quasi-1D conductors, Comptes Rendus Physique, Volume 17 (2016), pp. 376-388 | DOI
[466] Origin of rapid oscillations in the metallic phase for the organic conductor , Solid State Comm., Volume 103 (1997), pp. 387-392 | DOI
[467] High-Field Shubnikov–de-Haas effect and magnetoresistance in the organic metal , Solid State Comm., Volume 52 (1984), pp. 547-549 | DOI
[468] et al. Origin of rapid oscillations in low-dimensional , Phys. Rev. B, Volume 76 (2007), 045109 | DOI
[469] Quantized Hall effect in the organic superconductor (TMTSF)ReO, Phys. Rev. B, Volume 43 (1991), 045109, pp. 11467-11470 | DOI
[470] Quantum oscillations in quasi-one-dimensional metals with spin-density-wave ground states, Phys. Rev. B, Volume 59 (1999), pp. 2604-2608 | DOI
[471] Theory of Inelastic Collisions between Atoms, Helv. Phys. Acta, Volume 5 (1932), pp. 369-422
[472] Interlayer Magnetoresistance of Quasi-One-Dimensional Layered Organic Conductors, Phys. Rev. Lett., Volume 99 (2007), 017002 | DOI
[473] Anisotropy of an instability for a spin density wave induced by a magnetic field in a Q1D conductor, JETP Lett., Volume 43 (1986) no. 3, 017002, pp. 174-177
[474] Theory of Unusual Anisotropy of Magnetoresistance in Organic Superconductors, Phys. Rev. Lett., Volume 63 (1989), pp. 1315-1317 | DOI
[475] : Meanstructure at 7K comparative studt with 300K and 125K data, J. Phys. Colloques, Volume 44 (1983) no. C3, pp. 1071-1074 | DOI
[476] Commensurability Effect of Magnetoresistance Anisotropy in the Quasi-One-Dimensional Conductor Tetramethyltetraselenafulvalenium Perchlorate, (TMTSF)ClO, Phys. Rev. Lett., Volume 66 (1991), pp. 1525-1528 | DOI
[477] Commensurate Fine Structure in Angular-Dependent Studies of (TMTSF)ClO, Phys. Rev.. Letters, Volume 67 (1991), pp. 3712-3715 | DOI
[478] Resonance effect in magnetotransport anisotropy of quasi-one-dimensional conductors, Phys. Rev. B, Volume 46 (1992), pp. 1812-1815 | DOI
[479] Measuring the Fermi surface of quasi-one-dimensional metals, Phys. Rev. Lett., Volume 72 (1994), pp. 3714-3717 | DOI
[480] et al. Test for Interlayer Coherence in a Quasi-Two-Dimensional Superconductor, Phys. Rev. Lett., Volume 88 (2002), 037001 | DOI
[481] Non Fermi liquid Transport in , Phys. Rev. Lett., Volume 75 (1995), 037001, pp. 4690-4693 | DOI
[482] Third Angular Effect of Magnetoresistance in Quasi-One-Dimensional Conductors, Phys. Rev. Lett., Volume 77 (1996), pp. 5261-5264 | DOI
[483] Direct evidence of dimensionality enhancement of Q1D TMTSF and DMET salts, Synth. Met., Volume 120 (2001), pp. 885-886 | DOI
[484] et al. Anomalous Angular Dependence of Magnetoresistance of an Organic Superconductor, (DMET)I, J. Phys. Soc. Jpn., Volume 64 (1995), pp. 2307-2310 | DOI
[485] Third angular effect of (TMTSF)ClO in R- and Q-states under pressure, Synth. Met., Volume 133-134 (2003), pp. 55-56
[486] The Physics of organic electronics. From molecules to crystals and polymers, IOP Publishing, 2023 | DOI
[487] Strain-Tunable Superconducting Field-Effect Transistor with an Organic Strongly-Correlated Electron System, Adv. Mater., Volume 26 (2014), pp. 3490-3495 | DOI
[488] A strained organic field-effect transistor with a gate-tunable superconducting channel, Nature Comm., Volume 4 (2013), 2379 | DOI
[489] Electric-field-induced Mott transition in an organic molecular crystal, Phys. Rev. B, Volume 84 (2011), 125129, 2379 | DOI
[490] Control of Organic Superconducting Field effect Transistor by Cooling Rate, Crystals, Volume 9 (2019), 605, 125129 | DOI
[491] Quasi two-dinensional electronic Properties of the Lithium Molybdenum Bronze, LiMoO, Solid State Comm., Volume 51 (1984), 605, pp. 671-674 | DOI
[492] Superconductivity in a Layered TaPdTe with PdTe Chains, J. Am. Chem. Soc, Volume 136 (2014), pp. 1284-1287 | DOI
[493] Unconventional superconductivity in quasi-one-dimensional , Phys. Rev. B, Volume 91 (2015), 020506 | DOI
[494] Nodal superconductivity and superconducting dome in new layered superconductor TaPdTe, Phys. Rev. B, Volume 92 (2015), 180505, 020506 | DOI
[495] Upper Critical Magnetic Field far above the Paramagnetic Pair-Breaking Limit of Superconducting One-Dimensional LiMoO Single Crystals, Phys. Rev. Lett., Volume 108 (2012), 187003, 180505 | DOI
[496] Superconductivity in Quasi-One-Dimensional with Significant Electron Correlations, Phys. Rev. X, Volume 5 (2015), 011013, 187003 | DOI
[497] Anisotropic , thermodynamic and transport measurements, and pressure dependence of in single crystals, Phys. Rev. B, Volume 91 (2015), 020507, 011013 | DOI
[498] Superconducvity in a layered perovskite whitout copper, Nature, Volume 372 (1994), 020507, pp. 532-534 | DOI
[499] A Personal Perspective on the Unconventional Superconductivity of , J. Supercond. Nov. Magn., Volume 33 (2019), pp. 177-182 | DOI
[500] et al. Pressure dependence of superconducting critical temperature of , Phys. Rev. B, Volume 56 (1997) no. 13, pp. 7890-7893 | DOI
[501] Superconducting spin smecticity evidencing the Fulde–Ferrell–Larkin–Ovchinnikov state in , Science, Volume 376 (2022) no. 6591, pp. 397-400 | DOI
[502] Constraints on the superconducting order parameter in from oxygen-17 nuclear magnetic resonance, Nature, Volume 574 (2019), pp. 72-75 | DOI
[503] Reduction of the O Knight Shift in the Superconducting State and the Heat-up Effect by NMR Pulses on , J. Phys. Soc. Jpn., Volume 89 (2020), 034712 | DOI
[504] Evidence for even parity unconventional superconductivity in , Proc. Natl. Acad. Sci. U. S. A., Volume 118 (2020) no. 25, e2025313118, 034712 | DOI
[505] High-Temperature Superconductivity: some remarks (Progress in Low Temperature Physics), Volume 12, Elsevier, 1989, e2025313118, pp. 1-44 | DOI
[506] A dialogue on the theory of High T, Physics Today, Volume 44 (1991), pp. 54-61 | DOI
Cité par Sources :
Commentaires - Politique