[Antiferromagnétisme et supraconductivité dans des composés de fermions lourds à base de cérium]
La question de la compétition entre états fondamentaux possibles est centrale en matière condensée. Dans cet article, nous discutons de lʼinteraction entre supraconductivité non conventionnelle et antiferromagnétisme, au cœur de la problématique des fermions lourds à base de cérium : dans tous les exemples que nous discutons, la supraconductivité apparaît à la limite de lʼinstabilité magnétique. Nous discutons spécifiquement les cas de CeRhIn5 et CeCoIn5, qui permettent une description détaillée de cette interactions magnétisme-supraconductivité au niveau microscopique. La discussion est élargie brièvement au cas général des supraconducteurs à fortes corrélations électroniques, et nous terminons par le cas des systèmes non centro-symmétriques, récemment découverts, dont le paramètre dʼordre supraconducteur devrait mélanger composante paire et impaire.
The study of competing ground states is a central issue in condensed matter physics. In this article we will discuss the interplay of antiferromagnetic order and unconventional superconductivity in Ce based heavy-fermion compounds. In all examples discussed superconductivity appears at the border of magnetic order. Special focus is given on the pressure–temperature–magnetic field phase diagram of CeRhIn5 and CeCoIn5 which allows one to discuss microscopic coexistence of magnetic order and superconductivity in detail. A striking point is the similarity of the phase diagram of different classes of strongly correlated systems which is discussed briefly. The recently discovered non-centrosymmetric superconductors will open a new access with the possible mixing of odd and even parity pairing.
Mot clés : Fermions lourds, Supraconductivité non conventionnelle, Point critique quantique, CeRhIn5, CeCoIn5
Georg Knebel 1 ; Dai Aoki 1 ; Jacques Flouquet 1
@article{CRPHYS_2011__12_5-6_542_0, author = {Georg Knebel and Dai Aoki and Jacques Flouquet}, title = {Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds}, journal = {Comptes Rendus. Physique}, pages = {542--566}, publisher = {Elsevier}, volume = {12}, number = {5-6}, year = {2011}, doi = {10.1016/j.crhy.2011.05.002}, language = {en}, }
TY - JOUR AU - Georg Knebel AU - Dai Aoki AU - Jacques Flouquet TI - Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds JO - Comptes Rendus. Physique PY - 2011 SP - 542 EP - 566 VL - 12 IS - 5-6 PB - Elsevier DO - 10.1016/j.crhy.2011.05.002 LA - en ID - CRPHYS_2011__12_5-6_542_0 ER -
Georg Knebel; Dai Aoki; Jacques Flouquet. Antiferromagnetism and superconductivity in cerium based heavy-fermion compounds. Comptes Rendus. Physique, Volume 12 (2011) no. 5-6, pp. 542-566. doi : 10.1016/j.crhy.2011.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.05.002/
[1] Progress in Low Temperature Physics, vol. 15, Elsevier, Amsterdam, 2005 (Ch. 2, p. 139)
[2] Where is the quantum critical point in the cuprate superconductors?, Phys. Status Solidi B, Volume 247 (2010) no. 3, Sp. Iss. SI, pp. 537-543
[3] Physics of Organic Superconductors and Conductors, Springer Series in Material Science, vol. 110, Springer, Berlin, 2008, p. 357
[4] High-temperature superconductivity in iron-based materials, Nat. Phys., Volume 6 (2010) no. 9, p. 645
[5] Universal relationship of the resistivity and specific heat in heavy-fermion compounds, Solid State Commun., Volume 58 (1986), p. 507
[6] Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys., Volume 79 (2007), p. 1015
[7] Quantum criticality in heavy-fermion metals, Nat. Phys., Volume 4 (2008) no. 3, pp. 186-197
[8] Quantum criticality and global phase diagram of magnetic heavy fermions, Phys. Status Solidi, Volume 247 (2010), pp. 476-484
[9] Kondo breakdown as a selective Mott transition in the Anderson lattice, Phys. Rev. Lett., Volume 98 (2007), p. 206401
[10] Zeeman-driven Lifshitz transition: A model for the experimentally observed Fermi-surface reconstruction in YbRh2Si2, Phys. Rev. Lett., Volume 106 (2011), p. 137002
[11] New trend of superconductivity in strongly correlated electron systems, J. Phys.: Condens. Matter, Volume 19 (2007), p. 125201
[12] Phys. B: Condens. Matter, 259–261 (1999), p. 1
[13] Signatures of valence fluctuations in CeCu2Si2 under high pressure, Phys. Rev. B, Volume 69 (2004), p. 024508
[14] Observation of two distinct superconducting phases in CeCu2Si2, Science, Volume 302 (2003), pp. 2104-2107
[15] Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Phys. Rev. B, Volume 48 (1993) no. 10, pp. 7183-7196
[16] Anomalous properties around magnetic instability in heavy electron systems, J. Phys. Soc. Jpn., Volume 64 (1995) no. 3, pp. 960-969
[17] Superconductivity without phonons, Nature, Volume 450 (2007), pp. 1177-1183
[18] Kondo lattice and weak antiferromagnetism, Physica B & C, Volume 91 (1977), pp. 231-234
[19] Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett., Volume 43 (1979), p. 1892
[20] Superconductivity, a probe of the magnetic state of local moments in metals, Appl. Phys., Volume 9 (1976), pp. 179-204
[21] Superconductivity in CeCu2Si2 – dependence of on alloying and stoichiometry, Helv. Phys. Acta, Volume 56 (1983) no. 1–3, pp. 165-177
[22] Discovery of an antiferromagnetic ordering above upper critical field in the heavy fermion superconductor CeCu2Si2, J. Magn. Magn. Mater., Volume 76–77 (1988), pp. 517-519
[23] Coexisting static magnetic order and superconductivity in CeCu2.1Si2 found by muon spin relaxation, Phys. Rev. B, Volume 39 (1989) no. 7, pp. 4726-4729
[24] UBe13: An unconventional actinide superconductor, Phys. Rev. Lett., Volume 50 (1983), pp. 1595-1598
[25] Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3, Phys. Rev. Lett., Volume 52 (1984), pp. 679-682
[26] Superconducting and magnetic transitions in the heavy-fermion system URu2Si2, Phys. Rev. Lett., Volume 55 (1985), pp. 2727-2730
[27] Heavy-fermion superconductivity at in the antiferromagnet UPd2Al3, Z. Phys. B – Condens. Matter., Volume 84 (1991), p. 1
[28] A new heavy-fermion superconductor – UNi2Al3, Z. Phys. B – Condens. Matter., Volume 83 (1991), p. 305
[29] Pressure induced heavy fermion superconductivity of CeCu2Ge2, Phys. Lett. A, Volume 163 (1992) no. 5–6, pp. 475-480
[30] Superconductivity in heavy-fermion CeRh2Si2, Phys. Rev. B, Volume 53 (1996) no. 13, pp. 8241-8244
[31] Magnetically mediated superconductivity in heavy fermion compounds, Nature, Volume 394 (1998) no. 6688, pp. 39-43
[32] Magnetic and superconducting phases of CePd2Si2, Phys. B: Condens. Matter, Volume 223–224 (1996), pp. 50-52
[33] Pressure-induced superconductivity in quasi-2d CeRhIn5, Phys. Rev. Lett., Volume 84 (2000) no. 21, pp. 4986-4989
[34] Heavy fermion superconductivity in CeCoIn5, J. Phys.: Condens. Matter, Volume 13 (2001) no. 17, p. L337
[35] A new heavy-fermion superconductor CeIrIn5: A relative of the cuprates, Europhys. Lett., Volume 53 (2001) no. 3, p. 354
[36] Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si, Phys. Rev. Lett., Volume 92 (2004), p. 027003
[37] Recent advances in Ce-based heavy-fermion superconductivity and Fermi surface properties, J. Phys. Soc. Jpn., Volume 76 (2007), p. 051003
[38] Huge upper critical field and electronic instability in pressure-induced superconductor CeIrSi3 without inversion symmetry in the crystal structure, J. Phys. Soc. Jpn., Volume 77 (2008) no. 7, p. 073705
[39] Superconducting phases of f-electron compounds, Rev. Mod. Phys., Volume 81 (2009) no. 4, pp. 1551-1624
[40] et al. Proceedings of Physical Phenomena at High Magnetic Fields II (Z. Fisk; L. Gorkov; D. Metzer; R. Schieffer, eds.), World Scientific, Singapore, 1996, p. 125
[41] The effect of composition on the occurrence of a second phase transition in the vicinity of Tc in CeCu2Si2, Phys. B: Condens. Matter, Volume 206–207 (1995), pp. 586-588
[42] Nature of the a phase in CeCu2Si2, Phys. Rev. Lett., Volume 92 (2004) no. 13, p. 136401
[43] Evolution from magnetism to unconventional superconductivity in a series of CeCu2Si2 compounds probed by Cu NQR, Phys. Rev. Lett., Volume 82 (1999) no. 26, pp. 5353-5356
[44] Coexistence of superconductivity and antiferromagnetism in the heavy-fermion superconductor CeCu2(Si1 − xGex)2 probed by means of Cu nuclear quadrupole resonance – a test case for the theory, J. Phys.: Condens. Matter, Volume 13 (2001) no. 4, p. L79
[45] Spatial separation of antiferromagnetism and superconductivity in CeCu2Si2, J. Magn. Magn. Mater., Volume 310 (2007) no. 2, Part 1, pp. 295-297
[46] Pressure-induced valence crossover in superconducting CeCu2Si2, Phys. Rev. Lett., Volume 106 (2011), p. 186405
[47] Quantum valence criticality as an origin of unconventional critical phenomena, Phys. Rev. Lett., Volume 105 (2010) no. 18, p. 186403
[48] High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity, J. Phys. Soc. Jpn., Volume 77 (2008) no. 12, p. 123711
[49] Heavy-fermion compounds, studied using the de Haas–van Alphen effect, Physica B, Volume 171 (1991) no. 1–4, pp. 151-160
[50] Magnetically driven superconductivity in CeCu2Si2, Nat. Phys., Volume 7 (2011), pp. 119-124
[51] Spin resonance in the d-wave superconductor CeCoIn5, Phys. Rev. Lett., Volume 100 (2008) no. 8, p. 087001
[52] Superconductivity, upper critical field and anomalous normal state in CePd2Si2 near the quantum critical point, J. Low Temp. Phys., Volume 122 (2001) no. 5–6, pp. 591-604
[53] Further pressure studies around the magnetic instability of CePd2Si2, J. Phys.: Condens. Matter, Volume 13 (2001) no. 41, pp. 9335-9348
[54] Magnetic ordering in CeM2Si2 () compounds as studied by neutron diffraction, Phys. Rev. B, Volume 29 (1984) no. 5, pp. 2664-2672
[55] Magnetic excitations in heavy-fermion CePd2Si2, Phys. Rev. B, Volume 61 (2000) no. 13, pp. 8922-8931
[56] Si-NMR study of antiferromagnetic heavy-fermion compounds CePd2Si2 and CeRh2Si2, Phys. Rev. B, Volume 58 (1998) no. 13, pp. 8634-8639
[57] Kondo behavior in magnetic (Ce-La)Pd2Si2, Z. Phys. B, Volume 83 (1991), p. 207
[58] Electronic properties of CePd2Si2 under pressure, Phys. Rev. B, Volume 61 (2000) no. 13, pp. 8679-8682
[59] High magnetic field study of CePd2Si2, Phys. Rev. B, Volume 67 (2003) no. 9, p. 094420
[60] Transport evidence for pressure-induced superconductivity in CePd2Si2, Solid State Commun., Volume 112 (1999) no. 11, pp. 617-620
[61] Strain enhancement of superconductivity in CePd2Si2 under pressure, J. Phys.: Condens. Matter, Volume 14 (2002) no. 28, p. L529-L535
[62] Antiferromagnetic spin fluctuations and superconductivity, Rep. Prog. Phys., Volume 66 (2003), p. 1299
[63] La structure des substances magnétiques, J. Phys. Chem. Solids, Volume 11 (1959), p. 303
[64] Neutron diffraction study under pressure of the heavy-fermion compound CePd2Si2, Phys. Rev. B, Volume 71 (2005) no. 6, p. 064404
[65] Magnetic structure of the compound CeIn3, Solid State Commun., Volume 34 (1980) no. 5, pp. 293-295
[66] Magnetic-ordering in the presence of fast spin fluctuations – a neutron-scattering study of CeIn3, Phys. Rev. B, Volume 22 (1980) no. 9, pp. 4379-4388
[67] Study of low-energy magnetic excitations in single-crystalline CeIn3 by inelastic neutron scattering, J. Phys.: Condens. Matter, Volume 15 (2003) no. 22, p. 3741
[68] Electronic properties of CeIn3 under high pressure near the quantum critical point, Phys. Rev. B, Volume 65 (2001), p. 024425
[69] Pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3: An 115In-NQR study under pressure, Phys. Rev. B, Volume 77 (2008) no. 6, p. 064508
[70] The normal and superconducting states of CeIn3 near the border of antiferromagnetic order, Phys. C: Superconductivity, Volume 282–287 (1997) no. 1, pp. 303-306
[71] The quantum critical point revisited in CeIn3, High Pressure Res. J., Volume 22 (2002), p. 163
[72] 115In-NQR evidence for unconventional superconductivity in CeIn3 under pressure, Phys. Rev. B, Volume 66 (2002) no. 5, p. 054521 | DOI
[73] Magnetic instability in Ce heavy fermion compounds, J. Magn. Magn. Mater., Volume 90–91 (1990), pp. 377-382
[74] Change of the Fermi surface across the critical pressure in CeIn3: The de Haas van Alphen study under pressure, J. Phys. Soc. Jpn., Volume 74 (2005) no. 11, pp. 3016-3026
[75] Field and spin dependences of effective mass in CeIn3, J. Phys. Soc. Jpn., Volume 74 (2005) no. 12, pp. 3295-3305
[76] Pressure evolution of a field induced Fermi surface reconstruction and of the Néel critical field in CeIn3, Phys. Rev. B, Volume 79 (2009), p. 214428
[77] Emergent fluctuation hot spots on the Fermi surface of CeIn3 in strong magnetic fields, Phys. Rev. Lett., Volume 93 (2004) no. 24, p. 246401
[78] Fermi surface of CeIn3 above the Néel critical field, Phys. Rev. Lett., Volume 99 (2007) no. 5, p. 056401
[79] Heavy holes as a precursor to superconductivity in antiferromagnetic CeIn3, Proc. Natl. Acad. Sci., Volume 106 (2009) no. 19, pp. 7741-7744
[80] Evolution of spin and field dependences of the effective mass with pressure in CeIn3, Phys. Rev. Lett., Volume 93 (2004) no. 24, p. 247003
[81] Fermi-surface topology of the heavy-fermion antiferromagnetic superconductor CeIn3, Phys. Rev. B, Volume 68 (2003) no. 9, p. 094513
[82] Nature of f-electrons in CeIn3: Theoretical analysis of positron annihilation data, Phys. Rev. B, Volume 71 (2005) no. 23, p. 233103
[83] New superconducting and magnetic phases emerge on the magnetic criticality in CeIn3, J. Phys. Soc. Jpn., Volume 73 (2004) no. 7, p. 1647
[84] Observation of superconductivity in heavy-fermion compounds of Ce2CoIn8, J. Phys. Soc. Jpn., Volume 71 (2002) no. 12, pp. 2836-2838
[85] Emergence of a superconducting state from an antiferromagnetic phase in single crystals of the heavy fermion compound Ce2PdIn8, Phys. Rev. Lett., Volume 103 (2009) no. 2, p. 027003
[86] Comment on “Emergence of a superconducting state from an antiferromagnetic phase in single crystals of the heavy fermion compound Ce2PdIn8”, Phys. Rev. Lett., Volume 104 (2010) no. 5, p. 059701
[87] Reply to Comment on “Emergence of a superconducting state from an antiferromagnetic phase in single crystals of the heavy fermion compound Ce2PdIn8”, Phys. Rev. Lett., Volume 104 (2010) no. 5, p. 059702
[88] Magnetically mediated superconductivity in quasi-two and three dimensions, Phys. Rev. B, Volume 63 (2001) no. 5, p. 054529
[89] Magnetically mediated superconductivity: Crossover from cubic to tetragonal lattice, Phys. Rev. B, Volume 66 (2002) no. 22, p. 224504
[90] Quasi-two-dimensional Fermi surfaces and the de Haas van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5, J. Phys.: Condens. Matter, Volume 13 (2001) no. 27, p. L627-L634
[91] Structural tuning of unconventional superconductivity in PuMGa5 (), Phys. Rev. Lett., Volume 93 (2004) no. 14, p. 147005
[92] Plutonium-based superconductivity with a transition temperature above 18 K, Nature, Volume 420 (2002) no. 6913, pp. 297-299
[93] Advances in the preparation and characterization of transuranium systems, J. Phys.: Condens. Matter, Volume 15 (2003) no. 28, p. S2279
[94] Quantum phase diagram of antiferromagnetism and superconductivity with a tetracritical point in CeRhIn5 in zero magnetic field, Phys. Rev. B, Volume 76 (2007), p. 020509
[95] Pressure dependence of the magnetic ordering in CeRhIn5, Phys. Rev. B, Volume 77 (2008), p. 172502
[96] Magnetic structure of heavy-fermion Ce2RhIn8, Phys. Rev. B, Volume 64 (2001) no. 2, p. 020401
[97] Magnetic structure of CeRhIn5 under magnetic field, J. Phys.: Condens. Matter, Volume 19 (2007), p. 242204
[98] High-pressure phase diagrams of CeRhIn5 and CeCoIn5 studied by ac calorimetry, J. Phys.: Condens. Matter, Volume 16 (2004) no. 49, pp. 8905-8922
[99] Electronic structure of CeRhIn5: de Haas–van Alphen and energy band calculations, Phys. Rev. B, Volume 64 (2001), p. 064506
[100] Fermi surface, magnetic and superconducting properties of LaRhIn5 and CeTIn5 (T: Co, Rh and Ir), J. Phys. Soc. Jpn., Volume 71 (2002), p. 162
[101] Calculated de Haas–van Alphen quantities of CeMIn5 (, Rh, and Ir) compounds, Phys. Rev. B, Volume 69 (2004) no. 21, p. 214510
[102] Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5, Phys. Rev. B, Volume 81 (2010) no. 19, p. 195107
[103] Coexistence of antiferromagnetism and superconductivity in CeRhIn5 under high pressure and magnetic field, Phys. Rev. B, Volume 74 (2006), p. 020501(R)
[104] Competitive coexistence of superconductivity with antiferromagnetism in CeRhIn5, Phys. Rev. Lett., Volume 97 (2006) no. 1, p. 017005
[105] Ambient-pressure bulk superconductivity deep in the magnetic state of CeRhIn5, Phys. Rev. B, Volume 77 (2008), p. 100505
[106] Pressure-induced anomalous and unconventional superconductivity in CeRhIn5: 115In-NQR study under pressure, Phys. Rev. B, Volume 63 (2001), p. 220507(R)
[107] Switching of magnetic ordering in CeRhIn5 under hydrostatic pressure, J. Phys. Soc. Jpn., Volume 78 (2009) no. 7, p. 073703
[108] Strong coupling between antiferromagnetic and superconducting order parameters in CeRhIn5 studied by In-NQR spectroscopy, Phys. Rev. B, Volume 79 (2009), p. 214528
[109] Gapless-magnetic and quasiparticle excitations due to the coexistence of antiferromagnetism and superconductivity in CeRhIn5: A study of 115In-NQR under pressure, Phys. Rev. Lett., Volume 91 (2003) no. 13, p. 137001
[110] The quantum critical point in CeRhIn5: A resistivity study, J. Phys. Soc. Jpn., Volume 77 (2008) no. 11, p. 114704
[111] Electronic duality in strongly correlated matter, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), p. 6825
[112] Enhanced impurity scattering due to quantum critical fluctuations: Perturbational approach, J. Phys. Soc. Jpn., Volume 71 (2002) no. 3, pp. 867-871
[113] Isotropic quantum scattering and unconventional superconductivity, Nature, Volume 456 (2008), p. 366
[114] Origin of drastic change of Fermi surface and transport anomalies in CeRhIn5 under pressure, J. Phys. Soc. Jpn., Volume 79 (2010) no. 3, p. 033707
[115] Magnetism and superconductivity in strongly correlated CeRhIn5, New J. Phys., Volume 11 (2009), p. 055062
[116] Magnetic and thermal properties of CeIrIn5 and CeRhIn5, J. Phys. Soc. Jpn., Volume 70 (2001) no. 3, p. 877
[117] Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5, Nature, Volume 440 (2006) no. 7080, pp. 65-68
[118] SO(5) theory of antiferromagnetism and superconductivity, Rev. Mod. Phys., Volume 76 (2004) no. 3, pp. 909-974
[119] A drastic change of the Fermi surface at the critical pressure in CeRhIn5: dHvA study under pressure, J. Phys. Soc. Jpn., Volume 74 (2005) no. 4, p. 1103
[120] Quantum criticality and the phase diagram of the cuprates, Physica C, Volume 470 (2010), p. S4
[121] Effects of Co substitution on thermodynamic and transport properties and anisotropic in Ba(Fe1 − xCox)2As2 single crystals, Phys. Rev. B, Volume 78 (2008) no. 21, p. 214515
[122] Determination of the phase diagram of the electron-doped superconductor Ba(Fe1 − xCox)2As2, Phys. Rev. B, Volume 79 (2009) no. 1, p. 014506
[123] Unconventional pairing in the iron arsenide superconductors, Phys. Rev. B, Volume 81 (2010) no. 14, p. 140501
[124] Superconductivity gets an iron boost, Nature, Volume 464 (2010) no. 7286, pp. 183-186
[125] Competition between spin density wave order and superconductivity in the underdoped cuprates, Phys. Rev. B, Volume 80 (2009) no. 3, p. 035117
[126] A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor, Nature, Volume 425 (2003) no. 6960, pp. 814-817
[127] Quantum oscillations in an overdoped high- superconductor, Nature, Volume 455 (2008) no. 7215, pp. 952-955
[128] Quantum oscillations and the Fermi surface in an underdoped high- superconductor, Nature, Volume 447 (2007) no. 7144, pp. 565-568
[129] Quantum oscillations in the underdoped cuprate YBa2Cu4O8, Phys. Rev. Lett., Volume 100 (2008) no. 4, p. 047003
[130] Small Fermi surface pockets in underdoped high temperature superconductors: Observation of Shubnikov–de Haas oscillations in YBa2Cu4O8, Phys. Rev. Lett., Volume 100 (2008) no. 4, p. 047004
[131] A multi-component Fermi surface in the vortex state of an underdoped high- superconductor, Nature, Volume 454 (2008) no. 7201, pp. 200-203
[132] Spins in the vortices of a high-temperature superconductor, Science, Volume 291 (2001) no. 5509, pp. 1759-1762
[133] Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor, Nature, Volume 415 (2002) no. 6869, pp. 299-302
[134] Antiferromagnetic order as the competing ground state in electron-doped Nd1.85Ce0.15CuO4, Nature, Volume 423 (2003) no. 6939, pp. 522-525
[135] Magnetic-field-induced soft-mode quantum phase transition in the high-temperature superconductor La1.855Sr0.145CuO4: An inelastic neutron-scattering study, Phys. Rev. Lett., Volume 102 (2009) no. 17, p. 177006
[136] Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor, Nature, Volume 413 (2001) no. 6855, pp. 501-504
[137] Antiferromagnetic vortex core in Tl2Ba2CuO6 + δ studied by nuclear magnetic resonance, Phys. Rev. Lett., Volume 90 (2003) no. 19, p. 197003
[138] Antiferromagnetism in the vortex cores of YBa2Cu3O7 − δ, Phys. Rev. B, Volume 67 (2003) no. 22, p. 220503
[139] Evidence for static magnetism in the vortex cores of ortho-ii YBa2Cu3O6.50, Phys. Rev. Lett., Volume 88 (2002) no. 13, p. 137002
[140] Coexistence of magnetism and superconductivity in ultraclean underdoped YBa2Cu3O6.37, Phys. Rev. B, Volume 73 (2006) no. 14, p. 144509
[141] Phys. Rev. Lett., 89 (2002), p. 157004
[142] Avoided antiferromagnetic order and quantum critical point in CeCoIn5, Phys. Rev. Lett., Volume 91 (2003) no. 25, p. 257001
[143] Field tuned quantum critical point in CeCoIn5 near the superconducting upper critical field, Phys. Rev. B, Volume 71 (2005), p. 104528
[144] Interplay of superconductivity, antiferromagnetism, and Pauli depairing in CeCoIn5, J. Phys. Soc. Jpn., Volume 80 (2011), p. 053701
[145] Anomalous de Haas–van Alphen oscillations in CeCoIn5, Phys. Rev. Lett., Volume 94 (2005) no. 18, p. 186401
[146] Electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy, Phys. Rev. B, Volume 79 (2009) no. 7, p. 075104
[147] Angular position of nodes in the superconducting gap of quasi-2d heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett., Volume 87 (2001) no. 5, p. 057002
[148] Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specific heat and thermal conductivity studies, Phys. Rev. Lett., Volume 86 (2001) no. 22, pp. 5152-5155
[149] Field-angle dependence of the zero-energy density of states in the unconventional heavy-fermion superconductor CeCoIn5, J. Phys.: Condens. Matter, Volume 16 (2004) no. 3, p. L13
[150] Nodal structures of heavy fermion superconductors probed by the specific-heat measurements in magnetic fields, J. Phys. Soc. Jpn., Volume 76 (2007) no. 5, p. 051004
[151] NMR and NQR studies of the heavy fermion superconductors CeTIn5 ( and Ir), Phys. Rev. B, Volume 64 (2001), p. 134526
[152] Anisotropic spin fluctuations in heavy-fermion superconductor CeCoIn5: In-NQR and Co-NMR studies, J. Phys. Soc. Jpn., Volume 72 (2003) no. 9, pp. 2308-2311
[153] Low-frequency spin dynamics in the CeMIn5 materials, Phys. Rev. Lett., Volume 90 (2003) no. 22, p. 227202
[154] Favorable magnetic fluctuation anisotropy for unconventional superconductivity in f-electron systems, Phys. Rev. B, Volume 75 (2007) no. 14, p. 140509
[155] 59Co NMR shift anomalies and spin dynamics in the normal state of superconducting CeCoIn5: Verification of two-dimensional antiferromagnetic spin fluctuations, Phys. Rev. B, Volume 82 (2010) no. 2, p. 020501
[156] S. Kambe, H. Sakai, Y. Tokunaga, K. Kaneko, Correlation between the superconducting pairing symmetry and magnetic anisotropy in f-electron unconventional superconductors, J. Phys. Conf. Series (2011), in press.
[157] Reversible tuning of the heavy-fermion ground state in CeCoIn5, Phys. Rev. Lett., Volume 97 (2006) no. 5, p. 056404
[158] Occurrence of magnetism in CeMIn5 − xHgx (, Ir), Physica B, Volume 403 (2008) no. 5–9, pp. 1135-1137
[159] Evolution of the spin resonance in CeCoIn5 under magnetic field, J. Phys. Soc. Jpn., Volume 78 (2009) no. 11, p. 113706
[160] Coupled superconducting and magnetic order in CeCoIn5, Science, Volume 321 (2008) no. 5896, pp. 1652-1654
[161] Evidence for a magnetically driven superconducting Q phase of CeCoIn5, Phys. Rev. Lett., Volume 104 (2010) no. 12, p. 127001
[162] Microscopic evidence for field-induced magnetism in CeCoIn5, Phys. Rev. Lett., Volume 98 (2007), p. 036402
[163] Field evolution of coexisting superconducting and magnetic orders in CeCoIn5, Phys. Rev. Lett., Volume 104 (2010) no. 8, p. 087001
[164] Field-induced quantum critical point in CeCoIn5, Phys. Rev. Lett., Volume 91 (2003) no. 24, p. 246405
[165] Nonvanishing energy scales at the quantum critical point of CeCoIn5, Phys. Rev. Lett., Volume 97 (2006) no. 10, p. 106606
[166] Behavior of the quantum critical point and the Fermi-liquid domain in the heavy fermion superconductor CeCoIn5 studied by resistivity, J. Phys. Soc. Jpn., Volume 80 (2011) no. 2, p. 024710
[167] Specific heat in high magnetic fields and non-Fermi-liquid behavior in CeMIn5 (, Co), Phys. Rev. B, Volume 64 (2001) no. 13, p. 134524
[168] Superconductivity in a strong spin-exchange field, Phys. Rev., Volume 135 (1964) no. 3A, p. A550-A563
[169] Inhomogeneous state of superconductors, Sov. Phys. JETP, Volume 47 (1964), p. 1136
[170] Unconventional heavy-fermion superconductor CeCoIn5: dc magnetization study at temperatures down to 50 mK, Phys. Rev. B, Volume 65 (2002), p. 180504(R)
[171] First order superconducting phase transition in CeCoIn5, Phys. Rev. Lett., Volume 89 (2002) no. 13, p. 137002
[172] Superconducting vortices in CeCoIn5: Toward the Pauli-limiting field, Science, Volume 319 (2008) no. 5860, pp. 177-180
[173] Paramagnetic effects in vortex lattice field distribution in strongly type-II superconductors, Phys. Rev. B, Volume 82 (2010) no. 10, p. 104505
[174] Impurity-induced broadening of the transition to a Fulde–Ferrell–Larkin–Ovchinnikov phase, Phys. Rev. B, Volume 81 (2010) no. 6, p. 060510
[175] Magnetic enhancement of superconductivity from electron spin domains, Nature (London), Volume 425 (2003), p. 51
[176] Anisotropy of thermal conductivity and possible signature of the Fulde–Ferrell–Larkin–Ovchinnikov state in CeCoIn5, Phys. Rev. B, Volume 70 (2004), p. 134513
[177] High field state of the flux line lattice in the unconventional superconductor CeCoIn5, Phys. Rev. B, Volume 70 (2004), p. 020506(R)
[178] Texture in the superconducting order parameter of CeCoIn5 revealed by nuclear magnetic resonance, Phys. Rev. Lett., Volume 94 (2005), p. 047602
[179] NMR study of the possible FFLO state in Nohara, Phys. Rev. Lett., Volume 97 (2006), p. 117002
[180] Field dependence of the ground state in the exotic superconductor CeCoIn5: A nuclear magnetic resonance investigation, Phys. Rev. Lett., Volume 101 (2008), p. 047004
[181] Magnetic-field-induced pattern of coexisting condensates in the superconducting state of CeCoIn5, Phys. Rev. Lett., Volume 104 (2010) no. 21, p. 216403
[182] FFLO superconductivity near the antiferromagnetic quantum critical point, J. Phys. Soc. Jpn., Volume 77 (2008) no. 6, p. 063705
[183] Antiferromagnetic order and π-triplet pairing in the Fulde–Ferrell–Larkin–Ovchinnikov state, J. Phys. Soc. Jpn., Volume 78 (2009) no. 11, p. 114715
[184] Inherent spin density wave instability by vortices in superconductors with strong Pauli effects | arXiv
[185] Antiferromagnetic order in Pauli limited unconventional superconductors | arXiv
[186] Spin density wave ordering induced by -wave superconductivity in nearly 2D heavy fermion compounds in a magnetic field | arXiv
[187] Order parameter and vortices in the superconducting q phase of CeCoIn5, Phys. Rev. Lett., Volume 102 (2009) no. 20, p. 207004
[188] Magnetic-field-induced lattice anomaly inside the superconducting state of CeCoIn5: Anisotropic evidence of the possible Fulde–Ferrell–Larkin–Ovchinnikov state, Phys. Rev. Lett., Volume 98 (2007) no. 8, p. 087001
[189] Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5, Phys. Rev. Lett., Volume 105 (2010) no. 18, p. 187001
[190] Fulde–Ferrell–Larkin–Ovchinnikov state in a perpendicular field of quasi-two-dimensional CeCoIn5, Phys. Rev. Lett., Volume 97 (2006) no. 22, p. 227002
[191] Field-induced coupled superconductivity and spin density wave order in the heavy fermion compound CeCoIn5, Phys. Rev. Lett., Volume 103 (2009) no. 23, p. 237003
[192] Anisotropic violation of the Wiedemann–Franz law at a quantum critical point, Science, Volume 316 (2007), p. 1320
[193] Apparent violation of the Wiedemann–Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point, Phys. Rev. Lett., Volume 101 (2008) no. 26, p. 266403
[194] Probing the quantum critical behavior of CeCoIn5 via hall effect measurements, Phys. Rev. Lett., Volume 98 (2007) no. 5, p. 057001
[195] Towards the identification of a quantum critical line in the phase diagram of CeCoIn5 with thermal-expansion measurements, Phys. Rev. Lett., Volume 106 (2011) no. 8, p. 087003
[196] Antiferromagnetic quantum criticality induced by onset of superconductivity around upper critical field: non-Fermi liquid behavior of CeCoIn5 at , J. Phys.: Condens. Matter, Volume 20 (2008) no. 32, p. 325226
[197] Competition and/or coexistence of antiferromagnetism and superconductivity in CeRhIn5 and CeCoIn5, Phys. Status Solidi B, Volume 247 (2010), p. 557
[198] Pressure dependence of the Fulde–Ferrell–Larkin–Ovchinnikov state in CeCoIn5, Phys. Rev. Lett., Volume 97 (2006) no. 3, p. 039901
[199] Pressure dependence of the first-order superconducting phase transition in CeCoIn5, J. Phys. Soc. Jpn., Volume 74 (2005) no. 4, pp. 1115-1118
[200] Magnetic criticality and unconventional superconductivity in CeCoIn5: Study of 115In-nuclear quadrupole resonance under pressure, J. Phys. Soc. Jpn., Volume 73 (2004), p. 2073
[201] A de Haas–van Alphen experiment under pressure on CeCoIn5: Deviation from the quantum critical region, J. Phys.: Condens. Matter, Volume 15 (2003) no. 32, p. L499-L504
[202] Specific heat at the transition in a superconductor with fluctuating magnetic moments, Phys. Rev. B, Volume 68 (2003) no. 5, p. 052507
[203] Upper critical field of CeCoIn5 | arXiv
[204] Structure of “triplet” superconducting energy gaps, Phys. Rev. B, Volume 30 (1984) no. 7, pp. 4000-4002
[205] Heavy fermion superconductivity and antiferromagnetic ordering in CePt3Si without inversion symmetry, J. Phys. Soc. Jpn., Volume 76 (2007) no. 5, p. 051009
[206] Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3, Phys. Rev. Lett., Volume 95 (2005), p. 247004
[207] Pressure-induced heavy-fermion superconductivity in antiferromagnet CeIrSi3 without inversion symmetry, J. Phys. Soc. Jpn., Volume 75 (2006) no. 4, p. 043703
[208] High pressure phase diagram of the non-centrosymmetric antiferromagnet CeCoGe3, J. Phys. Soc. Jpn., Volume 78 (2009)
[209] Pressure-induced superconductivity and large upper critical field in the noncentrosymmetric antiferromagnet CeIrGe3, Phys. Rev. B, Volume 81 (2010), p. 140507(R)
[210] Superconductivity without inversion symmetry: MnSi versus CePt3Si, Phys. Rev. Lett., Volume 92 (2004) no. 9, p. 097001
[211] Superconductivity in non-centrosymmetric materials, J. Magn. Magn. Mater., Volume 310 (2007) no. 2, Part 1, pp. 536-540
[212] Electron correlation and pairing states in superconductors without inversion symmetry, J. Phys. Soc. Jpn., Volume 76 (2007) no. 5, p. 051008
[213] Y. Ōnuki, R. Settai, Electronic states and superconducting properties of non-centrosymmetric rare earth compounds, in press.
[214] Strong-coupling superconductivity of CeIrSi3 with the non-centrosymmetric crystal structure, J. Phys. Soc. Jpn., Volume 76 (2007) no. 8, p. 083706
[215] Colossal enhancement of upper critical fields in noncentrosymmetric heavy fermion superconductors near quantum criticality: CeRhSi3 and CeIrSi3, Phys. Rev. Lett., Volume 101 (2008) no. 26, p. 267006
[216] Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi3 and CeIrSi3, Phys. Rev. B, Volume 81 (2010) no. 10, p. 104506
[217] R. Settai, K. Katayama, D. Aoki, I. Sheikin, G. Knebel, J. Flouquet, Y. Ōnuki, Field-induced antiferromagnetic state in non-centrosymmetric superconductor CeIrSi3, in press.
Cité par Sources :
Commentaires - Politique