[Fermions lourds en champ magnétique intense]
Cette revue donne un aperçu des études expérimentales faites depuis 25 ans sur les systèmes à fermions lourds en champ magnétique intense. Les propriétés des transitions de phase magnétiques de composés proches dʼune instabilité antiferromagnétique sont présentées. Les effets dʼun champ magnétique intense sur la surface de Fermi, en particulier la séparation des bandes de spin « up » et « down », sont aussi considérées. Finalement, nous faisons le point sur les avancées récentes dans lʼétude en champ magnétique intense de composés non centrosymétriques et de supraconducteurs ferromagnétiques.
We give an overview on experimental studies performed in the last 25 years on heavy-fermion systems in a high magnetic field. The properties of field-induced magnetic transitions in heavy-fermion materials close to a quantum antiferromagnetic-to-paramagnetic instability are presented. Effects of a high magnetic field to the Fermi surface, in particular the splitting of spin-up and spin-down bands, are also considered. Finally, we review on recent advances on the study of non-centrosymmetric compounds and ferromagnetic superconductors in a high magnetic field.
Mot clés : Fermions lourds, Champ magnétique intense, Métamagnétisme, Surface de Fermi, Supraconducteurs ferromagnétiques
Dai Aoki 1 ; William Knafo 2 ; Ilya Sheikin 3
@article{CRPHYS_2013__14_1_53_0, author = {Dai Aoki and William Knafo and Ilya Sheikin}, title = {Heavy fermions in a high magnetic field}, journal = {Comptes Rendus. Physique}, pages = {53--77}, publisher = {Elsevier}, volume = {14}, number = {1}, year = {2013}, doi = {10.1016/j.crhy.2012.11.004}, language = {en}, }
Dai Aoki; William Knafo; Ilya Sheikin. Heavy fermions in a high magnetic field. Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 53-77. doi : 10.1016/j.crhy.2012.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.11.004/
[1] On the heavy fermion road, Prog. Low Temp. Phys., Volume 15 (2005), pp. 139-281
[2] Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Modern Phys., Volume 79 ( Aug 2007 ), pp. 1015-1075
[3] The Kondo lattice and weak antiferromagnetism, Physica B+C, Volume 91 (1977), pp. 231-234
[4] Revisited Doniach diagram: Influence of short-range antiferromagnetic correlations in the Kondo lattice, Phys. Rev. B, Volume 56 ( Nov 1997 ) no. 18, pp. 11820-11826
[5] Non-Fermi-liquid behavior in d- and f-electron metals, Rev. Modern Phys., Volume 73 ( Oct 2001 ) no. 4, pp. 797-855
[6] Superconducting phases of f-electron compounds, Rev. Modern Phys., Volume 81 ( Nov 2009 ) no. 4, pp. 1551-1624
[7] Anomalous properties around magnetic instability in heavy electron systems, J. Phys. Soc. Jpn., Volume 64 (1995) no. 3, pp. 960-969
[8] Quantum critical phenomena, Phys. Rev. B, Volume 14 ( Aug 1976 ) no. 3, pp. 1165-1184
[9] Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Phys. Rev. B, Volume 48 ( Sept 1993 ) no. 10, pp. 7183-7196
[10] How do Fermi liquids get heavy and die?, J. Phys., Condens. Matter, Volume 13 (2001) no. 35, p. R723-R738
[11] Antiferromagnetic criticality at a heavy-fermion quantum phase transition, Nature Phys., Volume 5 ( Oct 2009 ) no. 10, pp. 753-757
[12] The break-up of heavy electrons at a quantum critical point, Nature, Volume 424 ( July 2003 ) no. 6948, pp. 524-527
[13] Field-induced ferromagnetic correlation in the heavy-fermion compound CeRu2Si2, J. Phys. Soc. Jpn., Volume 70 (2001) no. Supplement A, p. 118
[14] Magnetic instabilities in CeRu2Si2 compounds, Phys. B: Condens. Matter, Volume 259–261 (1999), pp. 48-53
[15] Phase diagram of heavy fermion systems, J. Magn. Magn. Mater., Volume 272–276 (2004) no. Part 1, pp. 27-31
[16] Magnetic field-induced superconductivity in the ferromagnet URhGe, Science, Volume 309 (2005) no. 5739, pp. 1343-1346
[17] Acute enhancement of the upper critical field for superconductivity approaching a quantum critical point in URhGe, Nature Phys., Volume 3 (2007), pp. 460-463
[18] Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si, Phys. Rev. Lett., Volume 92 ( Jan 2004 ), p. 027003
[19] Characteristics of the Cooper pairing in two-dimensional noncentrosymmetric electron systems, Sov. Phys. JETP, Volume 68 ( June 1989 ) no. 6, pp. 1244-1249
[20] Superconducting 2D system with lifted spin degeneracy: Mixed singlet-triplet state, Phys. Rev. Lett., Volume 87 ( July 2001 ), p. 037004
[21] Superconductivity on the border of itinerant-electron ferromagnetism in UGe2, Nature, Volume 406 (2000) no. 6796, pp. 587-592
[22] Coexistence of superconductivity and ferromagnetism in URhGe, Nature, Volume 413 (2001) no. 6856, pp. 613-615
[23] Pressure-induced superconductivity in ferromagnetic UIr without inversion symmetry, J. Phys., Condens. Matter, Volume 16 (2004) no. 4, p. L29
[24] Superconductivity on the border of weak itinerant ferromagnetism in UCoGe, Phys. Rev. Lett., Volume 99 ( Aug 2007 ) no. 6, p. 067006
[25] Metamagnetic-like transition in CeRu2Si2?, J. Low Temp. Phys., Volume 67 (1987), pp. 391-419
[26] Itinerant metamagnetism of CeRu2Si2: bringing out the dead. Comparison with the new Sr3Ru2O7 case, Physica B, Volume 319 (2002) no. 1–4, pp. 251-261
[27] Magnetization of CeCu6 at low temperatures, J. Magn. Magn. Mater., Volume 108 (1992), pp. 47-48
[28] Magnetic correlations and magnetic ordering in CeCu6 − xAux single crystals, Physica B, Volume 186 (1993) no. 188, pp. 590-592
[29] High-field metamagnetism in the antiferromagnet CeRh2Si2, Phys. Rev. B, Volume 81 ( Mar 2010 ) no. 9, p. 094403
[30] High magnetic field study of CePd2Si2, Phys. Rev. B, Volume 67 ( Mar 2003 ) no. 9, p. 094420
[31] Suppression of the Kondo state in YbRh2Si2 by large magnetic fields, J. Magn. Magn. Mater., Volume 272–276 (2004), p. E87-E88
[32] Metamagnetism, Adv. Phys., Volume 26 (1977) no. 5, pp. 487-650
[33] Susceptibility maximum and metamagnetism in nearly ferromagnetic Laves phase intermetallic compounds, J. Magn. Magn. Mater., Volume 90–91 (1990), pp. 131-134
[34] Itinerant electron metamagnetism and spin fluctuations in nearly ferromagnetic metals Y(Co1 − xAlx)2, J. Phys., Condens. Matter, Volume 2 (1990) no. 14, p. 3381
[35] High-field magnetization of URu2Si2 under high pressure, Phys. B: Condens. Matter, Volume 294–295 (2001), pp. 271-275
[36] Metamagnetic behavior of the heavy-fermion compound CeNi2Ge2, J. Phys. Soc. Jpn., Volume 65 (1996) no. 6, pp. 1559-1561
[37] High-field magnetization of USn3 and UPb3, J. Phys. Soc. Jpn., Volume 71 (2002) no. 1, pp. 326-331
[38] Recent advances in the magnetism and superconductivity of heavy fermion systems, J. Phys. Soc. Jpn., Volume 73 (2004) no. 4, pp. 769-787
[39] Metamagnetic behavior in heavy-fermion compound YbIr2Zn20, J. Phys. Soc. Jpn., Volume 79 (2010) no. 6, p. 064609
[40] Field effects in strongly enhanced paramagnets, Physica B+C, Volume 109–110 (1982) no. Part 3, pp. 1837-1848
[41] Recent advances in Ce-based heavy-fermion superconductivity and Fermi surface properties, J. Phys. Soc. Jpn., Volume 76 (2007) no. 5, p. 051003
[42] Metamagnetic quantum criticality in metals, Phys. Rev. Lett., Volume 88 ( May 2002 ) no. 21, p. 217204
[43] Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7, Science, Volume 294 (2001) no. 5541, pp. 329-332
[44] Disorder-sensitive phase formation linked to metamagnetic quantum criticality, Science, Volume 306 (2004) no. 5699, pp. 1154-1157
[45] The magnetic instability in the heavy fermion compounds Ce1 − xLaxRu2Si2, J. Low Temp. Phys., Volume 84 (1991), pp. 49-86
[46] Low-temperature properties of the heavy-fermion compound CeRu2Si2 at the metamagnetic transition, J. Low Temp. Phys., Volume 81 (1990), pp. 317-339
[47] Further analysis of the quantum critical point of Ce1 − xLaxRu2Si2, J. Low Temp. Phys., Volume 147 (2007), pp. 215-230
[48] Metamagnetic CeRu2Si2: New perspectives for heavy-fermion studies in high fields, J. Magn. Magn. Mater., Volume 76–77 (1988), pp. 97-104
[49] Non-linear susceptibility in heavy fermion compounds CeRu2Si2 and Ce1 − xYxRu2Si2 (x< or =0.1), J. Phys., Condens. Matter, Volume 6 (1994) no. 44, p. 9383
[50] Concentration dependence of the pseudometamagnetic field in heavy fermion Ce1 − xYxRu2Si2, Phys. B: Condens. Matter, Volume 211 (1995) no. 1–4, pp. 230-232
[51] Continuous evolution of Fermi surface properties above metamagnetic transitions in CexLa1 − xRu2Si2, J. Phys. Soc. Jpn., Volume 77 (2008) no. 5, p. 053703
[52] Delocalization of the f electron in CexLa1 − xRu2Si2, J. Phys. Soc. Jpn., Volume 79 (2010) no. 8, p. 083706
[53] Anomalous scaling behavior of the dynamical spin susceptibility of Ce0.925La0.075Ru2Si2, Phys. Rev. B, Volume 70 ( Nov 2004 ), p. 174401
[54] Magnetic phase diagram and Fermi surface properties of CeRu2(Si1 − xGex)2, J. Phys. Soc. Jpn., Volume 80 (2011) no. 7, p. 074715
[55] New heavy fermion metamagnet CeFe2Ge2, J. Phys. Soc. Jpn., Volume 68 (1999) no. 4, pp. 1094-1097
[56] Magnetic properties of single crystal CeFe2Ge2, Phys. B: Condens. Matter, Volume 206–207 (1995), pp. 219-221
[57] Magnetic correlations in single-crystalline CeNi2Ge2, J. Phys., Condens. Matter, Volume 12 (2000) no. 25, p. 5423
[58] Magnetic transitions in CeIrIn5, Phys. B: Condens. Matter, Volume 329–333 (2003) no. Part 2, pp. 587-588
[59] Magnetic and thermal properties of CeIrIn5 and CeRhIn5, J. Phys. Soc. Jpn., Volume 70 (2001) no. 3, pp. 877-883
[60] Crystal-field and Kondo-scale investigations of CeMIn5 (, Ir, and Rh): A combined x-ray absorption and inelastic neutron scattering study, Phys. Rev. B, Volume 81 ( May 2010 ), p. 195114
[61] Inelastic neutron scattering study of cerium heavy fermion compounds, J. Magn. Magn. Mater., Volume 76–77 (1988), pp. 376-384
[62] Pronounced first-order metamagnetic transition in the paramagnetic heavy-fermion system CeTiGe, Phys. Rev. B, Volume 85 ( Feb 2012 ), p. 060401
[63] Metamagnetic behavior and Kondo breakdown in heavy-fermion CeFePO, Phys. Rev. Lett., Volume 107 ( Dec 2011 ), p. 277002
[64] Metamagnetic transition in heavy fermion compounds YbT2Zn20 (T: Co, Rh, Ir), J. Phys. Conf. Ser., Volume 273 (2011) no. 1, p. 012003
[65] Metamagnetic behavior in a heavy fermion compound YbCo2Zn20, J. Phys. Conf. Ser., Volume 273 (2011) no. 1, p. 012059
[66] Physical properties of YbXCu4 (, Au, Cd, Mg, Tl, and Zn) compounds, Phys. Rev. B, Volume 59 ( Mar 1999 ), pp. 6855-6866
[67] High-field properties of the heavy-fermion system YbCu5 and related intermetallics, Phys. B: Condens. Matter, Volume 294–295 (2001), pp. 284-287
[68] Magnetic excitations in USn3, Phys. Rev. B, Volume 41 ( May 1990 ), pp. 9294-9300
[69] Interplay of magnetism, Fermi surface reconstructions, and hidden order in the heavy-fermion material URu2Si2, Phys. Rev. B, Volume 85 ( Mar 2012 ), p. 094402
[70] Magnetic excitations in the heavy-fermion superconductor URu2Si2, Phys. Rev. B, Volume 43 ( June 1991 ), pp. 12809-12822
[71] Metamagnetic transition in UPt3 studied by high-field magnetization and de Haas–van Alphen experiments, Phys. Rev. B, Volume 60 ( Oct 1999 ), pp. 9248-9251
[72] Thermodynamics of the Kondo model, Phys. Rev. Lett., Volume 49 ( Aug 1982 ), pp. 497-500
[73] Magnetic susceptibility and specific heat of the Coqblin–Schrieffer model, Phys. Rev. Lett., Volume 51 ( July 1983 ), pp. 308-311
[74] Collective electron metamagnetism, Philos. Mag., Volume 7 (1962) no. 83, pp. 1817-1824
[75] Theory of the metamagnetic transition in heavy-fermion compounds, Europhys. Lett., Volume 17 (1992) no. 5, p. 469
[76] Metamagnetic transition and susceptibility maximum in an itinerant-electron system, Phys. Rev. B, Volume 47 ( May 1993 ), pp. 11211-11219
[77] Magnetization in heavy-fermion compounds, J. Phys. Soc. Jpn., Volume 66 (1997) no. 10, pp. 3001-3004
[78] Theory of metamagnetism in the heavy fermion compound CeRu2Si2, J. Phys. Soc. Jpn., Volume 67 (1998) no. 7, pp. 2197-2200
[79] The theory of the magnetization process in CeRu2Si2, J. Phys., Condens. Matter, Volume 3 (1991) no. 49, p. 9915
[80] Theory of itinerant-electron metamagnetism: II. The origin of the susceptibility maximum, J. Phys., Condens. Matter, Volume 10 (1998) no. 24, p. 5373
[81] Field-induced ferromagnetic exchange interaction in metamagnetic transitions of heavy-electron liquids, Phys. Rev. B, Volume 57 ( Mar 1998 ), pp. 5891-5899
[82] Thermal properties of heavy-fermion CeRu2S2, Phys. Rev. B, Volume 40 ( Nov 1989 ), pp. 8759-8768
[83] Spin fluctuation in heavy fermion CeRu2Si2, Phys. Rev. Lett., Volume 92 ( Mar 2004 ), p. 097204
[84] Magnetic ordering in CexLa1 − xRu2Si2 solid solutions, J. Magn. Magn. Mater., Volume 76–77 (1988), pp. 403-404
[85] Study of the crossover from ferromagnetic to antiferromagnetic ground state in CeRu2(Ge0.7Si0.3)2 by resistivity measurements under pressure, Phys. B: Condens. Matter, Volume 312–313 (2002), pp. 437-439
[86] Incommensurabilities and metamagnetism in the heavy-fermion alloys (Ce0.8La0.2)Ru2Si2 and CeRu2(Si0.9Ge0.1)2, Phys. B: Condens. Matter, Volume 171 (1991) no. 1–4, pp. 357-361
[87] Pressure-induced instability of magnetic order in Kondo-lattice system: Neutron diffraction study of the pseudo-binary alloy system Ce(Ru0.90Rh0.10)2(Si1 − yGey)2, J. Phys. Soc. Jpn., Volume 72 (2003) no. 7, pp. 1751-1757
[88] Ru NMR and NQR probes of the metamagnetic transition in CeRu2Si2, Phys. Rev. B, Volume 57 ( May 1998 ), p. R11054-R11057
[89]
When is determined from the magnetization or from its uniaxial pressure derivative, the magnetostriction, versus magnetic field, it corresponds to the change to a high magnetization regime, i.e., to the polarized paramagnetic regime. An increase with the temperature of this characteristic field was reported for CeRu2Si2 [26], Ce(Ru0.92Rh0.08)2Si2 [96], and URu2Si2 [71], confirming that this definition leads to a scale characteristic of the high-field polarized regime. To extract the characteristic scale of the low-field paramagnetic regime, it is appropriate to consider the temperature at the maximum of the magnetic susceptibility versus temperature, or the temperature at the extremum of the thermal expansion versus temperature (cf. [46,88] for CeRu2Si2 and [69] for URu2Si2, where and vanish at )
[90] Inflection point in the magnetic field dependence of the ordered moment of URu2Si2 observed by neutron scattering in fields up to 17 T, Phys. Rev. Lett., Volume 90 ( Feb 2003 ), p. 067203
[91] Magnetic phase diagram of UPd2Al3 in high magnetic fields, Jpn. J. Appl. Phys., Volume 41 (2002) no. Part 1, No. 6A, pp. 3673-3677
[92] Single crystal growth and magnetic properties of CeRh2Si2, J. Phys. Soc. Jpn., Volume 66 (1997) no. 8, pp. 2260-2263
[93] Localization of 4f state in YbRh2Si2 under magnetic field and high pressure: Comparison with CeRh2Si2, J. Phys. Soc. Jpn., Volume 75 (2006) no. 11, p. 114709
[94] YbNiSi3: An antiferromagnetic Kondo lattice with strong exchange interaction, Phys. Rev. B, Volume 70 ( Sept 2004 ), p. 100409
[95] Suppression of magnetic order in CeNiSi3 by magnetic fields, J. Magn. Magn. Mater., Volume 310 (2007) no. 2, Part 1, pp. 354-356
[96] Decoupling between field-instabilities of antiferromagnetism and pseudo-metamagnetism in Rh-doped CeRu2Si2 Kondo lattice, J. Phys. Soc. Jpn., Volume 81 (2012) no. 3, p. 034711
[97] Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2, Sci. Rep., Volume 1 ( Oct 13, 2011 )
[98] Emergent fluctuation hot spots on the Fermi surface of CeIn3 in strong magnetic fields, Phys. Rev. Lett., Volume 93 ( Dec 2004 ), p. 246401
[99] Nonlocal magnetic field-tuned quantum criticality in cubic CeIn3 − xSnx (), Phys. Rev. Lett., Volume 96 ( May 2006 ), p. 206401
[100] Magnetic field tuning of antiferromagnetic Yb3Pt4, Phys. Rev. B, Volume 84 ( Oct 2011 ), p. 134409
[101] Magnetic field and pressure phase diagrams of uranium heavy-fermion compound U2Zn17, J. Phys. Soc. Jpn., Volume 80 (2011) no. 1, p. 014706
[102] Field-induced phases in UPt2Si2, Phys. Rev. B, Volume 85 ( Feb 2012 ), p. 054410
[103] dHvA effect study of metamagnetic transition in CeRu2Si2. II – The state above the metamagnetic transition, J. Phys. Soc. Jpn., Volume 65 (1996) no. 2, pp. 515-524
[104] Heavy fermions survive the metamagnetic transition in UPd2Al3, Phys. Rev. B, Volume 55 ( May 1997 ), p. R13369-R13372
[105] Continuous evolution of the Fermi surface of CeRu2Si2 across the metamagnetic transition, Phys. Rev. Lett., Volume 96 (2006) no. 2, p. 026401
[106] Pressure-induced valence crossover in superconducting CeCu2Si2, Phys. Rev. Lett., Volume 106 ( May 2011 ), p. 186405
[107] High-magnetic-field X-ray absorption spectroscopy of field-induced valence transition in YbInCu4, J. Phys. Soc. Jpn., Volume 76 (2007) no. 3, p. 034702
[108] Suppression of f-electron itinerancy in CeRu2Si2 by a strong magnetic field, Phys. Rev. B, Volume 86 ( July 2012 ), p. 041109
[109] Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of URu2Si2, Rev. Modern Phys., Volume 83 ( Nov 2011 ), pp. 1301-1322
[110] On the hidden order in URu2Si2, antiferro hexadecapole order and its consequences, J. Phys. Soc. Jpn., Volume 80 (2011) no. 8, p. 084702
[111] Pressure–temperature phase diagram of the heavy-electron superconductor, J. Magn. Magn. Mater., Volume 310 (2007) no. 2, Part 1, pp. 214-220
[112] phase diagram of URu2S2 in high magnetic fields, Phys. Rev. B, Volume 68 ( July 2003 ), p. 020406
[113] Thermoelectric evidence for high-field anomalies in the hidden order phase of URu2Si2, Phys. Rev. B, Volume 83 ( June 2011 ), p. 245117
[114] Metamagnetic transition in a heavy fermion superconductor URu2Si2, J. Phys. Soc. Jpn., Volume 68 (1999) no. 10, pp. 3394-3401
[115] Electrical transport in URu2Si2, J. Phys., Condens. Matter, Volume 1 (1989) no. 38, p. 6817
[116] Exotic superconducting properties in the electron-hole-compensated heavy-fermion “semimetal” URu2Si2, Phys. Rev. Lett., Volume 99 ( Sept 2007 ), p. 116402
[117] Thermoelectricity of URu2Si2: Giant Nernst effect in the hidden-order state, Phys. Rev. B, Volume 70 ( Dec 2004 ), p. 220501
[118] Fermi-surface instability at the ‘hidden-order’ transition of URu2Si2, Nature Phys., Volume 5 (2009) no. 9, pp. 637-641
[119] Similarity of the Fermi surface in the hidden order state and in the antiferromagnetic state of URu2Si2, Phys. Rev. Lett., Volume 105 ( Nov 2010 ), p. 216409
[120] Pressure effect on the magnetic field–temperature () phase diagram of URu2Si2, Phys. B: Condens. Matter, Volume 403 (2008) no. 5–9, pp. 749-751
[121] Possible phase transition deep inside the hidden order phase of ultraclean URu2Si2, Phys. Rev. Lett., Volume 102 ( Apr 2009 ), p. 156403
[122] Sequential spin polarization of the Fermi surface pockets in URu2S2 and its implications for the hidden order, Phys. Rev. Lett., Volume 106 ( Apr 2011 ), p. 146403
[123] Observation of heavy electrons in CeRu2Si2 via the dHvA effect, J. Phys. Soc. Jpn., Volume 61 (1992) no. 10, pp. 3457-3461
[124] High-quality single crystal growth and the Fermi surface property of uranium and cerium compounds, J. Phys., Condens. Matter, Volume 15 (2003) no. 28, p. S1903
[125] Heavy-fermion compounds, studied using the de Haas–van Alphen effect, Phys. B: Condens. Matter, Volume 171 (1991) no. 1–4, pp. 151-160
[126] Effective-mass renormalization and de Haas–van Alphen effect in heavy-fermion systems, JETP Lett., Volume 56 (1992) no. 4, pp. 221-226
[127] Heavy fermions in the Kondo lattice as neutral quasiparticles and dHvA effect, Phys. B: Condens. Matter, Volume 194–196 (1994) no. Part 1, pp. 1171-1172
[128] New fermionic description of quantum spin liquid state, Phys. Rev. Lett., Volume 69 ( Oct 1992 ) no. 14, pp. 2142-2144
[129] Quantum interference in the spin-polarized heavy fermion compound CeB6: Evidence for topological deformation of the Fermi surface in strong magnetic fields, Phys. Rev. Lett., Volume 81 ( July 1998 ) no. 4, pp. 870-873
[130] Spin-split masses and a critical behavior of almost localized narrow-band and heavy-fermion systems, Phys. B: Condens. Matter, Volume 378–380 (2006), pp. 654-660
[131] Magnetic properties of almost localized fermions revisited: Spin dependent masses and quantum critical behavior, Phys. Status Solidi (B), Volume 243 (2006) no. 1, pp. 78-88
[132] Spin-dependent mass enhancement under a magnetic field in the periodic Anderson model, J. Phys. Soc. Jpn., Volume 77 (2008) no. 2, p. 023703
[133] Mean-field study of the heavy-fermion metamagnetic transition, Phys. Rev. B, Volume 77 ( Mar 2008 ) no. 9, p. 094419
[134] Observation of the magnetic field dependence of the cyclotron mass in the Kondo lattice CeB6, Phys. Rev. Lett., Volume 59 ( Oct 1987 ) no. 14, pp. 1609-1612
[135] Specific heat of heavy fermions in Ce-based Kondo-lattices at very low temperatures, J. Magn. Magn. Mater., Volume 63–64 (1987), pp. 355-357
[136] Electronic structures of PrPb3 in the para- and antiferroquadrupolar phases, Acta Phys. Polon. B, Volume 34 (2003) no. 22, pp. 1031-1034
[137] Development of the high-field heavy-fermion ground state in CexLa1 − xB6 intermetallics, Phys. Rev. Lett., Volume 82 ( May 1999 ) no. 18, pp. 3669-3672
[138] Quasi-two-dimensional Fermi surfaces and the de Haas–van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn5, J. Phys., Condens. Matter, Volume 13 (2001) no. 27, p. L627-L634
[139] Fermi surface of the heavy-fermion superconductor CeCoIn5: The de Haas–van Alphen effect in the normal state, Phys. Rev. B, Volume 64 ( Nov 2001 ) no. 21, p. 212508
[140] Anomalous de Haas–van Alphen oscillations in CeCoIn5, Phys. Rev. Lett., Volume 94 ( May 2005 ) no. 18, p. 186401
[141] Olga Howczaka, Jozef Spałek, Spin and magnetic field dependences of quasiparticle effective mass in ferromagnetic state of heavy fermions, in: SCESʼ11, Cambridge, UK, 2011.
[142] De Haas–van Alphen effect in metals without an inversion center, Phys. Rev. B, Volume 72 ( Dec 2005 ) no. 21, p. 212504
[143] Fermi surface property of CeCoGe3 and LaCoGe3 without inversion symmetry in the tetragonal crystal structure, J. Phys. Soc. Jpn., Volume 75 (2006) no. 4, p. 044711
[144] High-field de Haas–van Alphen effect in non-centrosymmetric CeCoGe3 and LaCoGe3, J. Phys. Soc. Jpn., Volume 80 (2011) no. Supplement A, p. SA020
[145] Magnetic Superconductors in Ferromagnetic Materials, vol. 5 (K.H.J. Buschow; E.P. Wohlfarth, eds.), Elsevier Science Publishers B.V., Amsterdam, 1990
[146] Coexistence of p-state superconductivity and itinerant ferromagnetism, Phys. Rev. B, Volume 22 ( Oct 1980 ) no. 7, pp. 3173-3182
[147] Superconductivity induced by spark erosion in ZrZn2, Phys. Rev. B, Volume 72 ( Dec 2005 ), p. 214523
[148] Magnetic field evolution of critical end point in UGe2, J. Phys. Conf. Ser., Volume 273 (2011) no. 1, p. 012017
[149] UGe2: A ferromagnetic spin-triplet superconductor, Phys. Rev. B, Volume 63 ( Mar 2001 ) no. 14, p. 144519
[150] () phase diagram of the ferromagnetic superconductor URhGe, Phys. B: Condens. Matter, Volume 359–361 (2005), pp. 1111-1113
[151] Pressure evolution of the ferromagnetic and field re-entrant superconductivity in URhGe, J. Phys. Soc. Jpn., Volume 78 (2009) no. 6, p. 063703
[152] Pressure–temperature phase diagram of polycrystalline UCoGe studied by resistivity measurement, J. Phys. Soc. Jpn., Volume 77 (2008) no. 7, p. 073703
[153] Tricritical point and wing structure in the itinerant ferromagnet UGe2, Phys. Rev. Lett., Volume 105 ( Nov 2010 ), p. 217201
[154] Evolution toward quantum critical end point in UGe2, J. Phys. Soc. Jpn., Volume 80 (2011) no. 8, p. 083703
[155] Ferromagnetic quantum critical endpoint in UCoAl, J. Phys. Soc. Jpn., Volume 80 (2011) no. 9, p. 094711
[156] Evolution of quasiparticle properties in UGe2 with hydrostatic pressure studied via the de Haas–van Alphen effect, Phys. Rev. Lett., Volume 87 ( Sept 2001 ), p. 166401
[157] A change of the Fermi surface in UGe2 across the critical pressure, J. Phys., Condens. Matter, Volume 14 (2002) no. 1, p. L29
[158] Pressure-induced superconductivity in a ferromagnet UGe2, J. Phys., Condens. Matter, Volume 13 (2001) no. 1, p. L17
[159] Quantum phase transitions in the itinerant ferromagnet ZrZn2, Phys. Rev. Lett., Volume 93 ( Dec 2004 ), p. 256404
[160] Formation of a nematic fluid at high fields in Sr3Ru2O7, Science, Volume 315 (2007) no. 5809, pp. 214-217
[161] Evidence for uniform coexistence of ferromagnetism and unconventional superconductivity in UGe2: A Ge-NQR study under pressure, J. Phys. Soc. Jpn., Volume 74 (2005) no. 2, pp. 705-711
[162] Ferromagnetism and superconductivity in uranium compounds, J. Phys. Soc. Jpn., Volume 81 (2012) no. 1, p. 011003
[163] Anisotropy and pressure dependence of the upper critical field of the ferromagnetic superconductor UGe2, Phys. Rev. B, Volume 64 ( Nov 2001 ), p. 220503
[164] Properties of ferromagnetic superconductors, C. R. Phys., Volume 12 (2011) no. 5–6, pp. 573-583
[165] Transverse and longitudinal magnetic-field responses in the Ising ferromagnets URhGe, UCoGe, and UGe2, Phys. Rev. B, Volume 83 ( May 2011 ), p. 195107
[166] Superconductivity reinforced by magnetic field and the magnetic instability in uranium ferromagnets, J. Phys. Soc. Jpn., Volume 80 (2011) no. Supplement A, p. SA008
[167] Extremely large and anisotropic upper critical field and the ferromagnetic instability in UCoGe, J. Phys. Soc. Jpn., Volume 78 (2009) no. 11, p. 113709
[168] Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe, Phys. Rev. Lett., Volume 103 ( Aug 2009 ), p. 097003
[169] http://sakaki.issp.u-tokyo.ac.jp/user/kittaka/contents/others/tc-history.html
[170] Novel superconducting properties on noncentrosymmetric heavy fermion CeRhSi3, Phys. C Supercond., Volume 470 (2010) no. Supplement 1, p. S529-S532
[171] Field re-entrant superconductivity induced by the enhancement of effective mass in URhGe, J. Phys. Soc. Jpn., Volume 77 (2008) no. 9, p. 094709
[172] First observation of quantum oscillations in the ferromagnetic superconductor UCoGe, J. Phys. Soc. Jpn., Volume 80 (2011) no. 1, p. 013705
[173] High-field superconductivity at an electronic topological transition in URhGe, Nature Phys., Volume 7 (2011), pp. 890-894
[174] Thermoelectricity of the ferromagnetic superconductor UCoGe, Phys. Rev. B, Volume 85 ( Jan 2012 ), p. 024526
[175] Superconductivity induced by longitudinal ferromagnetic fluctuations in UCoGe, Phys. Rev. Lett., Volume 108 (2012), p. 066403
[176] Anisotropy of antiferromagnetic spin fluctuations in the heavy fermion superconductors of CeMIn5 and PuMGa5 (, Rh), Mater. Res. Bull., Volume 1264 (2010), p. 69
Cité par Sources :
Commentaires - Politique