[Phénomènes opto-mécaniques dans le détecteur dʼondes gravitationnelles Advanced VIRGO]
Dans lʼinterféromètre, Advanced VIRGO, seconde génération de lʼantenne gravitationnelle VIRGO, les effets opto-mécaniques seront dʼune importance capitale pour le fonctionnement global du système. En effet, afin de compenser les défauts de symétrie entre les deux bras du Michelson, les cavités optiques devront être désaccordés de manière dissymétrique. Ceci permettra de mettre en place un schéma de détection DC. Dans cet article, on démontre que même dans le cas dʼun faible désaccord, la puissance laser intra-cavité rend les effets de ressorts optiques suffisamment importants pour contraindre le contrôle de lʼinterféromètre et limiter sa sensibilité.
The next generation of the gravitational wave detector VIRGO, namely Advanced VIRGO, will feel an enhancement of optomechanical effects. In fact, it is planned that cavities will be antisymmetrically detuned to compensate symmetry defects between the two arms, which then allows DC detection. In this article, we show that even with slight detuning, the high intra-cavity power stored within the Fabry–Perot cavities makes optical spring effects important enough to constrain the detector adjustment procedure and to limit its sensitivity.
Accepté le :
Publié le :
Mot clés : Ondes gravitationnelles, Cavités optiques, Ressort optique, Bruit de la pression de radiation
Walid Chaibi 1 ; François Bondu 2
@article{CRPHYS_2011__12_9-10_888_0, author = {Walid Chaibi and Fran\c{c}ois Bondu}, title = {Optomechanical issues in the gravitational wave detector {Advanced} {VIRGO}}, journal = {Comptes Rendus. Physique}, pages = {888--897}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.07.004}, language = {en}, }
Walid Chaibi; François Bondu. Optomechanical issues in the gravitational wave detector Advanced VIRGO. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 888-897. doi : 10.1016/j.crhy.2011.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.07.004/
[1] A. Brillet, et al., VIRGO: Proposal for the construction of a large interferometric detector of gravitational waves, 1989, unpublished.
[2] The VIRGO sensitivity curve http://www.virgo.infn.it/senscurve (VIRGO internal note VIR-NOT-PER-1390-51, 2004, and)
[3] et al. Monolithic fused silica suspension for the VIRGO gravitational waves detector, Rev. Sci. Instrum., Volume 73 (2002), p. 3318
[4] Thermal noise reduction in interferometric gravitational wave antennas using high order TEM modes, Class. Quantum Grav., Volume 23 (2006), p. 5777
[5] Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics, Phys. Rev. D, Volume 65 (2002), p. 022002
[6] et al. VIRGO status, Class. Quantum Grav., Volume 25 (2008), p. 184001
[7] et al. DC-readout of a signal-recycled gravitational wave detector, Class. Quantum Grav., Volume 26 (2009), p. 055012
[8] Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors, Phys. Rev. D, Volume 64 (2001), p. 042006
[9] Signal recycled laser-interferometer gravitational-wave detectors as optical springs, Phys. Rev. D, Volume 65 (2002), p. 042001
[10] Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme, Phys. Rev. D, Volume 67 (2003), p. 122005
[11] The VIRGO physics book: Optics and related topics, 2006 http://www.cascina.virgo.infn.it/vpb/
[12] Quantum-mechanical radiation-pressure fluctuations in an interferometer, Phys. Rev. Lett., Volume 45 (1980), p. 75
[13] Quantum-mechanical noise in an interferometer, Phys. Rev. D, Volume 23 (1981), p. 1693
[14] C. Fabre, S. Reynaud, Quantum noise in optical systems: A semiclassical approach, in: J. Dalibard, J.M. Raimond, J. Zinn-Justin (Eds.), Session LIII, Les Houches, 1990.
[15] Observation and characterization of an optical spring, Phys. Rev. A, Volume 69 (2004), p. 051801
[16] Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, Volume 444 (2006), p. 71
[17] Beating quantum limits in an optomechanical sensor by cavity detuning, Phys. Rev. A, Volume 73 (2006), p. 033819
[18] Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring, Phys. Rev. Lett., Volume 100 (2008), p. 010801
[19] Gravitational Radiation (N. Deruelle; T. Piran, eds.), North-Holland, Amsterdam, 1983, p. 321
[20] Optimization of long-baseline optical interferometers for gravitational-wave detection, Phys. Rev. D, Volume 38 (1988), p. 433
Cité par Sources :
Commentaires - Politique