Comptes Rendus
Presence of electromagnetic fluctuations in micromechanics
[Influence des fluctuations électromagnétiques en micromécanique]
Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 898-907.

Les microsystèmes électromécaniques (MEMS) et les effets mécaniques dus aux fluctuations quantiques sont fortement reliés. Les MEMS ont permis la mesure quantitative de la force de Casimir à lʼéchelle micro et nanomètrique. Si les MEMS sont une bonne sonde de ces effets, cʼest parce quʼils y sont très sensibles et cela signifie la nécessité pour les ingénieurs de mieux prendre en compte à lʼavenir lʼeffet des fluctuations quantiques ou thermiques sur les MEMS utilisés comme capteurs ou actionneurs. Ces effets sont dus aux propriétés du couplage électron–photon et ces questions sont ainsi liées à la plasmonique et à la photonique.

Micro electromechanical systems (MEMS) and mechanical effects of quantum fluctuations become strongly related. MEMS have allowed the production of important experimental results such as quantitative measurements of the Casimir force at the micro- and nanoscales. MEMS are used to probe these effects because they are sensitive to them and engineers will certainly have to increasingly consider the effects of quantum and thermal fluctuations in the design of MEMS that are used as actuators and sensors. These effects on MEMS are controlled by the electron–photon coupling. These questions are then coupled to new fields of research, such as photonics and plasmonics.

Publié le :
DOI : 10.1016/j.crhy.2011.10.014
Mots clés : Quantum fluctuations, Casimir force, Microsystems, Atomic Force Microscopy, Near Field Heat Transfer
Joël Chevrier 1

1 Institut Néel CNRS/UJF, 24 avenue des Martyrs, Grenoble cedex 9, France
@article{CRPHYS_2011__12_9-10_898_0,
     author = {Jo\"el Chevrier},
     title = {Presence of electromagnetic fluctuations in micromechanics},
     journal = {Comptes Rendus. Physique},
     pages = {898--907},
     publisher = {Elsevier},
     volume = {12},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crhy.2011.10.014},
     language = {en},
}
TY  - JOUR
AU  - Joël Chevrier
TI  - Presence of electromagnetic fluctuations in micromechanics
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 898
EP  - 907
VL  - 12
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.10.014
LA  - en
ID  - CRPHYS_2011__12_9-10_898_0
ER  - 
%0 Journal Article
%A Joël Chevrier
%T Presence of electromagnetic fluctuations in micromechanics
%J Comptes Rendus. Physique
%D 2011
%P 898-907
%V 12
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2011.10.014
%G en
%F CRPHYS_2011__12_9-10_898_0
Joël Chevrier. Presence of electromagnetic fluctuations in micromechanics. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 898-907. doi : 10.1016/j.crhy.2011.10.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.014/

[1] C. Cohen-Tannoudji; G. Grynberg; J. Dupont-Roc Atoms–Photon Interactions: Basic Processes and Applications, Wiley, New York, 1992

[2] H.B.G. Casimir; D. Polder The influence of retardation on the London–van der Waals forces, Phys. Rev., Volume 73 (1948) no. 4, pp. 360-372

[3] H.B.G. Casimir On the attraction between two perfectly conducting plates, Proc. R. Netherlands Acad. Arts Sci., Volume 51 (1948), pp. 793-795

[4] C. Genet; F. Intravaia; A. Lambrecht; S. Reynaud; A. Lambrecht; R.H. French; et al.; A.W. Rodriguez; F. Capasso; G. Johnson The Casimir effect in microstructured geometries, Nature Photon., Volume 29 ( September 2002 ) no. 1–2, p. 331-221

[5]

That MEMS are of increasing importance is illustrated by smartphones which contain highly sophisticated MEMS such as a 3D gyroscope and an accelerometer similar to the one found in Airbag sensors.

[6] http://www.scientificamerican.com/article.cfm?id=darpa-casimir-effect-research

[7] http://www.seas.harvard.edu/capasso/electroforces.html

[8] H.B. Chan et al. Quantum mechanical actuation of microelectromechanical systems by the Casimir force, Science, Volume 291 (2001), p. 1941

[9] G. Jourdan et al. Quantitative non-contact dynamic Casimir force measurements, EPL, Volume 85 (2009), p. 31001

[10] U. Mohideen; A. Roy Precision Measurement of the Casimir Force from 0.1 to 0.9 μm, Phys. Rev. Lett., Volume 81 (1998), p. 004549

[11] R.S. Decca et al. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates, Phys. Rev. D, Volume 75 (2007), p. 077101

[12] D. Lopez et al. MEMS technology for the advancement of science, J. Low Temp. Phys., Volume 135 (2004), p. 51

[13] H.B. Chan et al. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays, Phys. Rev. Lett., Volume 101 (2008), p. 03040

[14] S. de Man et al. Halving the Casimir force with conductive oxides, Phys. Rev. Lett., Volume 103 (2009), p. 040402

[15] G. Palasantzas; P.J. van Zwol; J.Th.M. De Hosson Transition from Casimir to van der Waals force between macroscopic bodies, Appl. Phys. Lett., Volume 93 (2008), p. 121912

[16] F. Intravaia; A. Lambrecht Surface plasmon modes and the Casimir energy, Phys. Rev. Lett., Volume 94 (2005), p. 110404

[17] A. Lambrecht; I.G. Pirozhenko Casimir force between dissimilar mirrors and the role of the surface plasmons, Phys. Rev. A, Volume 78 (2008), p. 062102

[18] C. Henkel et al. Coupled surface polaritons and the Casimir force, Phys. Rev. A, Volume 69 (2004), p. 023808

[19] D. Polder; M. Van Hove Theory of radiative heat transfer between closely spaced bodies, Phys. Rev. B, Volume 4 (1971), p. 3303

[20] A. Lambrecht; et al.; I.G. Piroshenko; A. Lambrecht Influence of slab thickness on the Casimir force, Phys. Rev. A, Volume 77 (2007), p. 44006

[21] M. Laroche; R. Carminati; J.-J. Greffet Near-field thermophotovoltaic energy conversion, J. Appl. Phys., Volume 100 (2006), p. 063704

[22] S.K. Lamoreaux Demonstration of the Casimir force in the 0.6 to 6 μm range, Phys. Rev. Lett., Volume 78 (1997), p. 5

[23] G. Bressi et al. Measurement of the Casimir force between parallel metallic surfaces, Phys. Rev. Lett., Volume 88 (2002), p. 041804

[24] I.G. Pirozhenko; A. Lambrecht Casimir repulsion and metamaterials, J. Phys. A: Math. Theor., Volume 41 (2008), p. 164015

[25] D. Woolf; M. Loncar; F. Capasso The forces from coupled surface plasmon polaritons in planar waveguides, Opt. Express, Volume 17 (2009), p. 19996

[26] A. Lambrecht; V. Marachevsky Casimir interaction of dielectric gratings, Phys. Rev. Lett., Volume 16 (2008), p. 160403

[27] R. Eisenschitz; F. London On the ration between van der Waals forces and the homopolar binding forces, Z. Phys., Volume 60 (1930), p. 491

[28] F. London On the theory of system of molecular forces, Z. Phys., Volume 63 (1930), p. 245

[29] F. London On some properties and applications of molecular forces, Z. Phys. Chem. B, Volume 11 (1930), p. 222

[30] B.V. Derjaguin; I.I. Abrikosova; E.M. Lifshitz Direct measurement of molecular attraction between solids separated by a narrow gap, Quart. Rev. (London), Volume 10 (1956), p. 295

[31] M.J. Spaarnay Measurements of attractive forces between flat plates, Physica, Volume 24 (1958), p. 751

[32] G.K. Binnig; C.F. Quate; Ch. Gerber Atomic force microscope, Phys. Rev. Lett., Volume 56 (1986), p. 930

[33] R.S. Decca Invited speaker at new frontiers in Casimir force control, 2009 http://cnls.lanl.gov/casimir/PresentationsSF/Force_Control-talk.pdf

[34] E.M. Lifshitz The theory of molecular attractive forces between solids, Sov. Phys. JETP, Volume 29 (1955), p. 94

[35] I.E. Dzyaloshinskii; E.M. Lifshitz; L.P. Pitaevskii General theory of van der Waals forces, Sov. Phys. Usp., Volume 4 (1961), p. 153

[36] H.B. Callen; T.A. Welton Irreversibility and generalized noise, Phys. Rev., Volume 83 (1951), p. 34

[37] S.M. Rytov Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford, MA, 1959

[38] A. Kittel Nanophotonics: Probing near-field thermal radiation, Nature Photon., Volume 3 (2009), p. 492

[39] E. Rousseau Radiative heat transfer at the nanoscale, Nature Photon., Volume 3 (2009), p. 514

[40] Sheng Shen; Arvind Narayanaswamy; Gang Chen Surface phonon polaritons mediated energy transfer between nanoscale gaps, Nano Lett., Volume 9 (2009), p. 2909

[41] A. Siria et al. Viscous cavity damping of a microlever in a simple fluid, Phys. Rev. Lett., Volume 102 (2009), p. 254503

[42] A. Siria et al. A scheme for solving the plane–plane challenge in force measurements at the nanoscale, Nanoscale Res. Lett., Volume 5 (2010), p. 1360

[43] M. Reif et al. Reversible unfolding of individual titin immunoglobulin domains by AFM, Science, Volume 276 (1997), p. 1109

[44] G.A. Domoto; R.F. Boehm; C.L. Tien Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures, J. Heat Transf., Volume 92 (1970), p. 412

[45] C.M. Hargreaves Anomalous radiative transfer between closely-spaced bodies, Phys. Lett. A, Volume 30 (1969), p. 491

[46] R.S. Ottens; V. Quetschke; S. Wise; A. Alemi; R. Lundock; G. Mueller; D.H. Reitze; D.B. Tanner; B.F. Whiting Near-field radiative heat transfer between macroscopic planar surfaces, Phys. Rev. Lett., Volume 107 (2011), p. 014301

[47] A.O. Sushkov; W.J. Kim; D.A.R. Dalvit; S.K. Lamoreaux Observation of the thermal Casimir force, Nature Phys., Volume 7 (2011) no. 3, pp. 230-233

[48] P. Andreucci et al., Impact of Casimir force on nano accelerometers modeling, in: 5th IEEE Conference on Sensors, 2006, p. 1057.

[49] S. de Man et al. Halving the Casimir force with conductive oxides, Phys. Rev. Lett., Volume 103 (2009), p. 040402

[50] G. Torricelli; I. Pirozhenko; S. Thornton; A. Lambrecht; C. Binns Casimir force between a metal and a semimetal, EPL, Volume 93 (2011), p. 51001

[51] M. Lisanti; D. Iannuzzi; F. Capasso Observation of the skin-depth effect on the Casimir force between metallic surfaces, PNAS, Volume 102 (2005), p. 11989

[52] T. Emig; A. Hanke; R. Golestanian; M. Kardar Probing the strong boundary shape dependence of the Casimir force, Phys. Rev. Lett., Volume 87 (2001), p. 260402

[53] H.-C. Chiu et al. Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation and comparison with exact theory, Phys. Rev. B, Volume 81 (2010), p. 115417

[54] A. Canaguier-Durand; P.A. Maia Neto; I. Cavero-Pelaez; A. Lambrecht; S. Reynaud Casimir interaction between plane and spherical metallic surfaces, Phys. Rev. Lett., Volume 102 (2009), p. 230404

[55] S.G. Johnson Numerical methods for computing Casimir interactions, July 2010 | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Revisiting thermal radiation in the near field

Jean-Jacques Greffet

C. R. Phys (2017)


Short-range fundamental forces

I. Antoniadis; S. Baessler; M. Büchner; ...

C. R. Phys (2011)