Micro electromechanical systems (MEMS) and mechanical effects of quantum fluctuations become strongly related. MEMS have allowed the production of important experimental results such as quantitative measurements of the Casimir force at the micro- and nanoscales. MEMS are used to probe these effects because they are sensitive to them and engineers will certainly have to increasingly consider the effects of quantum and thermal fluctuations in the design of MEMS that are used as actuators and sensors. These effects on MEMS are controlled by the electron–photon coupling. These questions are then coupled to new fields of research, such as photonics and plasmonics.
Les microsystèmes électromécaniques (MEMS) et les effets mécaniques dus aux fluctuations quantiques sont fortement reliés. Les MEMS ont permis la mesure quantitative de la force de Casimir à lʼéchelle micro et nanomètrique. Si les MEMS sont une bonne sonde de ces effets, cʼest parce quʼils y sont très sensibles et cela signifie la nécessité pour les ingénieurs de mieux prendre en compte à lʼavenir lʼeffet des fluctuations quantiques ou thermiques sur les MEMS utilisés comme capteurs ou actionneurs. Ces effets sont dus aux propriétés du couplage électron–photon et ces questions sont ainsi liées à la plasmonique et à la photonique.
Joël Chevrier 1
@article{CRPHYS_2011__12_9-10_898_0, author = {Jo\"el Chevrier}, title = {Presence of electromagnetic fluctuations in micromechanics}, journal = {Comptes Rendus. Physique}, pages = {898--907}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.10.014}, language = {en}, }
Joël Chevrier. Presence of electromagnetic fluctuations in micromechanics. Comptes Rendus. Physique, Nano- and micro-optomechanical systems, Volume 12 (2011) no. 9-10, pp. 898-907. doi : 10.1016/j.crhy.2011.10.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.014/
[1] Atoms–Photon Interactions: Basic Processes and Applications, Wiley, New York, 1992
[2] The influence of retardation on the London–van der Waals forces, Phys. Rev., Volume 73 (1948) no. 4, pp. 360-372
[3] On the attraction between two perfectly conducting plates, Proc. R. Netherlands Acad. Arts Sci., Volume 51 (1948), pp. 793-795
[4] The Casimir effect in microstructured geometries, Nature Photon., Volume 29 ( September 2002 ) no. 1–2, p. 331-221
[5]
That MEMS are of increasing importance is illustrated by smartphones which contain highly sophisticated MEMS such as a 3D gyroscope and an accelerometer similar to the one found in Airbag sensors.
[6] http://www.scientificamerican.com/article.cfm?id=darpa-casimir-effect-research
[7] http://www.seas.harvard.edu/capasso/electroforces.html
[8] et al. Quantum mechanical actuation of microelectromechanical systems by the Casimir force, Science, Volume 291 (2001), p. 1941
[9] et al. Quantitative non-contact dynamic Casimir force measurements, EPL, Volume 85 (2009), p. 31001
[10] Precision Measurement of the Casimir Force from 0.1 to 0.9 μm, Phys. Rev. Lett., Volume 81 (1998), p. 004549
[11] et al. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates, Phys. Rev. D, Volume 75 (2007), p. 077101
[12] et al. MEMS technology for the advancement of science, J. Low Temp. Phys., Volume 135 (2004), p. 51
[13] et al. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays, Phys. Rev. Lett., Volume 101 (2008), p. 03040
[14] et al. Halving the Casimir force with conductive oxides, Phys. Rev. Lett., Volume 103 (2009), p. 040402
[15] Transition from Casimir to van der Waals force between macroscopic bodies, Appl. Phys. Lett., Volume 93 (2008), p. 121912
[16] Surface plasmon modes and the Casimir energy, Phys. Rev. Lett., Volume 94 (2005), p. 110404
[17] Casimir force between dissimilar mirrors and the role of the surface plasmons, Phys. Rev. A, Volume 78 (2008), p. 062102
[18] et al. Coupled surface polaritons and the Casimir force, Phys. Rev. A, Volume 69 (2004), p. 023808
[19] Theory of radiative heat transfer between closely spaced bodies, Phys. Rev. B, Volume 4 (1971), p. 3303
[20] Influence of slab thickness on the Casimir force, Phys. Rev. A, Volume 77 (2007), p. 44006
[21] Near-field thermophotovoltaic energy conversion, J. Appl. Phys., Volume 100 (2006), p. 063704
[22] Demonstration of the Casimir force in the 0.6 to 6 μm range, Phys. Rev. Lett., Volume 78 (1997), p. 5
[23] et al. Measurement of the Casimir force between parallel metallic surfaces, Phys. Rev. Lett., Volume 88 (2002), p. 041804
[24] Casimir repulsion and metamaterials, J. Phys. A: Math. Theor., Volume 41 (2008), p. 164015
[25] The forces from coupled surface plasmon polaritons in planar waveguides, Opt. Express, Volume 17 (2009), p. 19996
[26] Casimir interaction of dielectric gratings, Phys. Rev. Lett., Volume 16 (2008), p. 160403
[27] On the ration between van der Waals forces and the homopolar binding forces, Z. Phys., Volume 60 (1930), p. 491
[28] On the theory of system of molecular forces, Z. Phys., Volume 63 (1930), p. 245
[29] On some properties and applications of molecular forces, Z. Phys. Chem. B, Volume 11 (1930), p. 222
[30] Direct measurement of molecular attraction between solids separated by a narrow gap, Quart. Rev. (London), Volume 10 (1956), p. 295
[31] Measurements of attractive forces between flat plates, Physica, Volume 24 (1958), p. 751
[32] Atomic force microscope, Phys. Rev. Lett., Volume 56 (1986), p. 930
[33] Invited speaker at new frontiers in Casimir force control, 2009 http://cnls.lanl.gov/casimir/PresentationsSF/Force_Control-talk.pdf
[34] The theory of molecular attractive forces between solids, Sov. Phys. JETP, Volume 29 (1955), p. 94
[35] General theory of van der Waals forces, Sov. Phys. Usp., Volume 4 (1961), p. 153
[36] Irreversibility and generalized noise, Phys. Rev., Volume 83 (1951), p. 34
[37] Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford, MA, 1959
[38] Nanophotonics: Probing near-field thermal radiation, Nature Photon., Volume 3 (2009), p. 492
[39] Radiative heat transfer at the nanoscale, Nature Photon., Volume 3 (2009), p. 514
[40] Surface phonon polaritons mediated energy transfer between nanoscale gaps, Nano Lett., Volume 9 (2009), p. 2909
[41] et al. Viscous cavity damping of a microlever in a simple fluid, Phys. Rev. Lett., Volume 102 (2009), p. 254503
[42] et al. A scheme for solving the plane–plane challenge in force measurements at the nanoscale, Nanoscale Res. Lett., Volume 5 (2010), p. 1360
[43] et al. Reversible unfolding of individual titin immunoglobulin domains by AFM, Science, Volume 276 (1997), p. 1109
[44] Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures, J. Heat Transf., Volume 92 (1970), p. 412
[45] Anomalous radiative transfer between closely-spaced bodies, Phys. Lett. A, Volume 30 (1969), p. 491
[46] Near-field radiative heat transfer between macroscopic planar surfaces, Phys. Rev. Lett., Volume 107 (2011), p. 014301
[47] Observation of the thermal Casimir force, Nature Phys., Volume 7 (2011) no. 3, pp. 230-233
[48] P. Andreucci et al., Impact of Casimir force on nano accelerometers modeling, in: 5th IEEE Conference on Sensors, 2006, p. 1057.
[49] et al. Halving the Casimir force with conductive oxides, Phys. Rev. Lett., Volume 103 (2009), p. 040402
[50] Casimir force between a metal and a semimetal, EPL, Volume 93 (2011), p. 51001
[51] Observation of the skin-depth effect on the Casimir force between metallic surfaces, PNAS, Volume 102 (2005), p. 11989
[52] Probing the strong boundary shape dependence of the Casimir force, Phys. Rev. Lett., Volume 87 (2001), p. 260402
[53] et al. Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation and comparison with exact theory, Phys. Rev. B, Volume 81 (2010), p. 115417
[54] Casimir interaction between plane and spherical metallic surfaces, Phys. Rev. Lett., Volume 102 (2009), p. 230404
[55] Numerical methods for computing Casimir interactions, July 2010 | arXiv
Cited by Sources:
Comments - Policy