[Approches spatiales cyclostationnaires pour le traitement des interférences en radioastronomie]
Lʼenvironnement électromagnétique est de plus en plus exploité par les activités de télécommunications, limitant ainsi la sensibilité et les performances des radiotélescopes. Il devient donc nécessaire de développer des traitements efficaces afin de limiter lʼimpact de ces interférences radioélectriques (RFI). Les approches proposées reposent sur lʼestimation de la signature spatiale de lʼinterférence grâce à la diagonalisation de la matrice de corrélation classique ou cyclique. Dans cet article, différentes techniques de diagonalisation de ces matrices sont comparées. Ensuite, des techniques de détection ou de filtrage des interférences sont illustrées sur des observations acquises avec le radiotélescope LOFAR. Lʼoriginalité de lʼétude repose sur lʼutilisation des caractéristiques cyclostationnaires intrinsèques aux RFIs.
Radio astronomical observations are increasingly corrupted by radio frequency interferences (RFIs), and real time filtering algorithms are becoming essential. In this article, it is shown how spatial processing techniques can limit the impact of the incoming RFIs for phased array radio telescopes. The proposed approaches are based on estimation of the RFI spatial signature. It requires the diagonalization of either the classic correlation matrix or the cyclic correlation matrix of the array. Different diagonalization techniques are compared. Then, RFI detection and RFI filtering techniques are illustrated through simulations on data acquired with the Low Frequency Array Radio telescope, LOFAR. The originality of the study is the use of the cyclostationarity property, in order to improve the spatial separation between cosmic sources and RFIs.
Mot clés : Cyclostationnarité, Traitement dʼinterférences, Réseaux dʼantennes phasées
Grégory Hellbourg 1, 2 ; Rodolphe Weber 1, 3 ; Cécile Capdessus 3 ; Albert-Jan Boonstra 2
@article{CRPHYS_2012__13_1_71_0, author = {Gr\'egory Hellbourg and Rodolphe Weber and C\'ecile Capdessus and Albert-Jan Boonstra}, title = {Cyclostationary approaches for spatial {RFI} mitigation in radio astronomy}, journal = {Comptes Rendus. Physique}, pages = {71--79}, publisher = {Elsevier}, volume = {13}, number = {1}, year = {2012}, doi = {10.1016/j.crhy.2011.10.010}, language = {en}, }
TY - JOUR AU - Grégory Hellbourg AU - Rodolphe Weber AU - Cécile Capdessus AU - Albert-Jan Boonstra TI - Cyclostationary approaches for spatial RFI mitigation in radio astronomy JO - Comptes Rendus. Physique PY - 2012 SP - 71 EP - 79 VL - 13 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2011.10.010 LA - en ID - CRPHYS_2012__13_1_71_0 ER -
%0 Journal Article %A Grégory Hellbourg %A Rodolphe Weber %A Cécile Capdessus %A Albert-Jan Boonstra %T Cyclostationary approaches for spatial RFI mitigation in radio astronomy %J Comptes Rendus. Physique %D 2012 %P 71-79 %V 13 %N 1 %I Elsevier %R 10.1016/j.crhy.2011.10.010 %G en %F CRPHYS_2012__13_1_71_0
Grégory Hellbourg; Rodolphe Weber; Cécile Capdessus; Albert-Jan Boonstra. Cyclostationary approaches for spatial RFI mitigation in radio astronomy. Comptes Rendus. Physique, Volume 13 (2012) no. 1, pp. 71-79. doi : 10.1016/j.crhy.2011.10.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.010/
[1] A survey of spectrum sensing algorithms for cognitive radio applications, IEEE Communications Surveys & Tutorials, Volume 11 (2009) no. 1 (First Quarter)
[2] A.J. Boonstra, R. Weber, RFI mitigation methods inventory, in: SKADS, FP6 European Project, DS4T3 Deliverable 1, 2009, 72 pp.
[3] A.J. Boonstra, Radio frequency interference mitigation in radio astronomy, PhD thesis, University of Delft, Netherlands, June 2005.
[4] Performance analysis of spatial filtering of RF interferences in radio astronomy, IEEE Transactions on Signal Processing, Volume 53 (2005) no. 3, pp. 896-910
[5] Statistical Spectral Analysis – A Non-Probabilistic Theory, Prentice-Hall, 1988
[6] Comparison between two cyclostationary detectors for RFI mitigation in radio astronomy, Radio Science, Volume 40 (2005)
[7] R. Weber, et al., Data preprocessing for decametre wavelength exoplanet detection: an example of cyclostationary RFI detector, in: EUSIPCO, Ooznan, Poland, September 2007.
[8] R. Feliachi, R. Weber, A.J. Boonstra, Cyclic spatial filtering in radio astronomy: Application to LOFAR data, in: EUSIPCO, Glasgow, UK, August 2009.
[9] et al. Calibration challenges for future radio telescopes, IEEE Signal Processing Magazine, Volume 27 (2010) no. 1, pp. 32-42
[10] et al. Bibliography on cyclostationarity, Signal Processing, Volume 85 ( December 2005 ) no. 12, pp. 2233-2303
[11] Cyclostationarity: Half a century of research, Signal Processing, Volume 86 ( April 2006 ) no. 4, pp. 639-697
[12] Linear Algebra, Prentice-Hall, July 1997
[13] Two decades of array signal processing research, IEEE Signal Processing Magazine, Volume 13 ( July 1997 ), pp. 67-94
[14] et al. A blind source separation technique using second order statistics, IEEE Transactions on Signal Processing, Volume 45 ( February 1997 ), pp. 434-444
[15] LOw Frequency ARray for radio astronomy, http://www.lofar.org/.
[16] Radioastronomy with LOFAR, C. R. Physique, Volume 13 (2012) no. 1, pp. 23-27 ( in this issue )
Cité par Sources :
Commentaires - Politique