We present recent developments in Kinetic Inductance Detectors (KID) for large arrays of detectors. The main application is ground-based millimeter wave astronomy. We focus in particular, as a case study, on our own experiment: NIKA (Néel IRAM KID Arrays). NIKA is today the best in-the-field experiment using KID-based instruments, and consists of a dual-band imaging system designed for the IRAM 30 meter telescope at Pico Veleta. We describe in this article, after a general context introduction, the KID working principle and the readout electronics, crucial to take advantage of the intrinsic KID multiplexability. We conclude with a small subset of the astronomical sources observed simultaneously at 2 mm and 1.4 mm by NIKA during the last run, held in October 2010.
Nous décrivons les récents développements concernant les grandes matrices de détecteurs à inductance cinétique (KID) dont lʼapplication principale est lʼastronomie millimétrique au sol. Nous détaillons en particulier notre propre caméra : NIKA (Néel IRAM KID Arrays) qui est aujourdʼhui lʼinstrument le plus abouti mettant en œuvre des KIDs. NIKA est une caméra bi-bande conçue pour le radiotélescope de 30 mètres de lʼIRAM à Pico Veleta. Après avoir décrit le contexte instrumental dans lequel ils sʼinscrivent, nous expliquerons le principe de fonctionnement des KIDs et de leur électronique de lecture, cruciale pour pouvoir tirer parti de leur potentiel de muliplexage. Pour finir, nous présentons quelques exemples dʼobservations effectuées par NIKA dans les bandes de 2 mm et 1,4 mm au cours de la dernière campagne dʼobservation en octobre 2010.
Mot clés : Astronomie millimétrique, Détecteurs supraconducteurs, Inductance cinétique, Électronique multiplexée
Nicolas Boudou 1; Alain Benoit 1; Olivier Bourrion 2; Martino Calvo 1; François-Xavier Désert 3; Juan Macias-Perez 2; Alessandro Monfardini 1; Markus Roesch 4
@article{CRPHYS_2012__13_1_62_0, author = {Nicolas Boudou and Alain Benoit and Olivier Bourrion and Martino Calvo and Fran\c{c}ois-Xavier D\'esert and Juan Macias-Perez and Alessandro Monfardini and Markus Roesch}, title = {Kinetic inductance detectors for millimeter and submillimeter astronomy}, journal = {Comptes Rendus. Physique}, pages = {62--70}, publisher = {Elsevier}, volume = {13}, number = {1}, year = {2012}, doi = {10.1016/j.crhy.2011.10.008}, language = {en}, }
TY - JOUR AU - Nicolas Boudou AU - Alain Benoit AU - Olivier Bourrion AU - Martino Calvo AU - François-Xavier Désert AU - Juan Macias-Perez AU - Alessandro Monfardini AU - Markus Roesch TI - Kinetic inductance detectors for millimeter and submillimeter astronomy JO - Comptes Rendus. Physique PY - 2012 SP - 62 EP - 70 VL - 13 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2011.10.008 LA - en ID - CRPHYS_2012__13_1_62_0 ER -
%0 Journal Article %A Nicolas Boudou %A Alain Benoit %A Olivier Bourrion %A Martino Calvo %A François-Xavier Désert %A Juan Macias-Perez %A Alessandro Monfardini %A Markus Roesch %T Kinetic inductance detectors for millimeter and submillimeter astronomy %J Comptes Rendus. Physique %D 2012 %P 62-70 %V 13 %N 1 %I Elsevier %R 10.1016/j.crhy.2011.10.008 %G en %F CRPHYS_2012__13_1_62_0
Nicolas Boudou; Alain Benoit; Olivier Bourrion; Martino Calvo; François-Xavier Désert; Juan Macias-Perez; Alessandro Monfardini; Markus Roesch. Kinetic inductance detectors for millimeter and submillimeter astronomy. Comptes Rendus. Physique, Volume 13 (2012) no. 1, pp. 62-70. doi : 10.1016/j.crhy.2011.10.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.008/
[1] A measurement of excess antenna temperature at 4080 Mc/s, Astrophysical Journal, Volume 142 (1965) no. 1, pp. 419-421
[2] A flat universe from high-resolution maps of the cosmic microwave background radiation, Nature, Volume 404 ( April 2000 ) no. 6781, pp. 955-959
[3] The Sunyaev–Zelʼdovich effect, Physics Reports—Review Section of Physics Letters, Volume 310 ( March 1999 ) no. 2–3, pp. 98-195
[4] A.L. Woodcraft, Scuba-2: a 10,000-pixel submillimetre camera for astronomy, in: 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, vols. 1 and 2, IEEE MTTS, 2007.
[5] The large APEX bolometer camera LABOCA, Astronomy and Astrophysics, Volume 497 ( April 2009 ) no. 3, pp. 945-962
[6] A broadband superconducting detector suitable for use in large arrays, Nature, Volume 425 ( October 2003 ) no. 6960, pp. 817-821
[7] Coupling superconducting qubits via a cavity bus, Nature, Volume 449 ( September 2007 ) no. 7161, pp. 443-447
[8] Music for sub/millimeter astrophysics, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, Proc. SPIE, vol. 7741, 2010
[9] NIKA: A millimeter-wave kinetic inductance camera, Astronomy and Astrophysics, Volume 521 (2010), p. A29
[10] A dual-band millimeter-wave kinetic inductance camera for the IRAM 30 m telescope, Astrophysical Journal Supplement Series, Volume 194 ( June 2011 ) no. 2, p. 24
[11] Titanium nitride films for ultrasensitive microresonator detectors, Applied Physics Letters, Volume 97 ( September 2010 ) no. 10, p. 102509
[12] A semiempirical model for two-level system noise in superconducting microresonators, Applied Physics Letters, Volume 92 ( May 2008 ) no. 21, p. 212504
[13] Lumped element kinetic inductance detectors, Journal of Low Temperature Physics, Volume 151 ( April 2008 ) no. 1–2, pp. 530-536
[14] M. Roesch, Development of lumped element kinetic inductance detectors for NIKA, in: ISSTT 2011, 2011.
[15] Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors, Applied Physics Letters, Volume 95 ( July 2009 ) no. 4, p. 042504
[16] A fast, ultra-sensitive and scalable detection platform based on superconducting resonators for fundamental condensed-matter and astronomical measurements, AIP Conference Proceedings, Volume 1185 (2009), pp. 84-87
[17] Electronics and data acquisition demonstrator for a kinetic inductance camera, Journal of Instrumentation, Volume 6 (2011), p. 6012
[18] Imaging MWC 349 from 7 millimeters to 90 centimeters, Astrophysical Journal, Volume 610 ( August 2004 ) no. 2, pp. 827-834
[19] Radio-emission from stars – a survey at 250-GHz, Astronomy and Astrophysics, Volume 281 ( January 1994 ) no. 1, pp. 161-183
[20] Continuum emission around AGB stars at 1.2 mm, Monthly Notices of the Royal Astronomical Society, Volume 377 ( May 2007 ) no. 2, pp. 931-944
[21] Type II supernovae as a significant source of interstellar dust, Nature, Volume 424 ( July 2003 ) no. 6946, pp. 285-287
Cited by Sources:
Comments - Policy