[Le rayonnement thermique revisité en champ proche]
Il est généralement admis que le rayonnement thermique est spatialement et temporellement incohérent. Nous montrons ici qu'en présence d'ondes de surface, il faut remettre en cause cette idée. Il est possible de concevoir des sources incandescentes qui sont directionnelles et spectralement sélectives. Nous décrivons également la découverte de l'exaltation de plusieurs ordres de grandeur de la densité d'énergie près d'une interface à une fréquence particulière ainsi que l'exaltation du flux radiatif échangé entre deux surfaces lorsque des ondes de surface existent. Ces résultats permettent d'envisager une nouvelle génération de sources incandescentes avec des applications possibles à la spectroscopie et à la conversion d'énergie par effet thermophotovoltaïque.
Thermal radiation is generally assumed to be both spatially and temporally incoherent. In this paper, we challenge this idea. It is possible to design incandescent sources that are directional and spectrally selective by taking advantage of surface waves. We also report the discovery of the enhancement by several orders of magnitude of the energy density close to an interface at a particular frequency as well as the enhancement of the radiative flux between two interfaces when surface phonon polaritons can be excited. These results lead to the design of a novel class of infrared incandescent sources with potential applications in spectroscopy and thermophotovoltaic energy conversion.
Mots-clés : Nanophotonique, Rayonnement de corps noir, Cohérence, Plasmon de surface, Phonon polariton de surface, Tranfert radiatif
Jean-Jacques Greffet 1
@article{CRPHYS_2017__18_1_24_0, author = {Jean-Jacques Greffet}, title = {Revisiting thermal radiation in the near field}, journal = {Comptes Rendus. Physique}, pages = {24--30}, publisher = {Elsevier}, volume = {18}, number = {1}, year = {2017}, doi = {10.1016/j.crhy.2016.11.001}, language = {en}, }
Jean-Jacques Greffet. Revisiting thermal radiation in the near field. Comptes Rendus. Physique, Prizes of the French Academy of Sciences 2015 / Prix de l'Académie des sciences 2015, Volume 18 (2017) no. 1, pp. 24-30. doi : 10.1016/j.crhy.2016.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.11.001/
[1] The Theory of Heat Radiation, Dover Publications, New York, 1959
[2] The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, Stechert and Co., New York, 1916
[3] Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford, MA, USA, 1959
[4] Principles of Statistical Radiophysics, Vol. 3, Springer Verlag, Berlin, 1989
[5] Surf. Sci. Rep., 57 (2005), p. 59
[6] Near-Field Radiative Heat Transfer Across Nanometer Vacuum Gaps, William Andrew, Oxford, 2016
[7] Radiation Heat Transfer, CRC Press Book, Boca Raton, FL, USA, 2016
[8] Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2006
[9] Statistical Physics, Pergamon Press, Oxford, UK, 1980
[10] Sov. Phys. JETP, 29 (1955) no. 73, p. 94
[11] Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, UK, 1995
[12] Statistical Optics, Wiley, New York, 1985
[13] Opt. Commun., 17 (1976), p. 196
[14] Opt. Commun., 19 (1976), p. 431
[15] On the relation between the radiating and absorbing powers of different bodies for light and heat, Philos. Mag. Ser. 4, Volume 20 (1860), p. 1
[16] Radiative Transfer, McGraw-Hill Company, New York, 1967
[17] Thermal Radiation Heat Transfer, McGraw-Hill Company, New York, 1972
[18] Rev. Gén. Therm., 202 (1978), p. 755
[19] Phys. Rev. B, 55 (1997), p. 10105
[20] Nature, 416 (2002), p. 61
[21] F. Marquier, Doctoral Thesis, École centrale Paris, Chatenay-Malabry, France, 2004.
[22] Phys. Rev. B, 69 (2004)
[23] J. Opt. Soc. Am., 58 (1968), p. 1256
[24] J. Opt. Soc. Am., 68 (1978), p. 6
[25] J. Opt. Soc. Am. A, 15 (1998), p. 2735
[26] Phys. Rev. Lett., 82 (1999), p. 1660
[27] Phys. Rev. Lett., 85 (2000), p. 1548
[28] J.-P. Mulet, Doctoral Thesis, École centrale Paris, Chatenay-Malabry, France, 2003.
[29] Phys. Rev. B, 68 (2003)
[30] Nature (2006), p. 740
[31] Nano Lett., 12 (2012), p. 1475
[32] Phys. Rev. Lett., 110 (2013)
[33] Appl. Phys. Lett., 78 (2001), p. 2931
[34] Rev. Phys. Appl., 3 (1968), p. 225
[35] Phys. Lett. A, 30 (1969), p. 491
[36] Phys. Rev. B, 4 (1971), p. 3303
[37] J. Appl. Phys., 76 (1994), p. 7209
[38] Microscale Thermophys. Eng., 6 (2002), p. 209
[39] Phys. Rev. A, 69 (2004)
[40] Nano Lett., 9 (2009), p. 2909
[41] Nat. Photonics, 3 (2009), p. 514
[42] Nat. Nanotechnol., 10 (2015), p. 253
[43] Nature, 528 (2015), p. 387
[44] Nat. Nanotechnol., 11 (2016), p. 515
[45] Opt. Lett., 25 (2000), p. 369
[46] Phys. Rev. Lett., 105 (2010)
[47] Phys. Rev. Lett., 94 (2005)
[48] Nat. Commun., 6 (2015), p. 6755 | DOI
[49] Phys. Rev. B, 86 (2012)
[50] Phys. Rev. Appl., 4 (2015)
[51] Opt. Lett., 37 (2012), p. 1038
[52] Nat. Nanotechnol., 11 (2016), p. 320
[53] Appl. Phys. Lett., 104 (2014)
[54] Nature, 478 (2011), p. 191
[55] Nat. Mater., 13 (2001), p. 928
[56] J. Appl. Phys., 100 (2006)
[57] Nat. Nanotechnol., 9 (2014), p. 126
- Effects of anisotropy, morphology, and interparticle coupling on the far-infrared optical modes of randomly oriented ZnO nanoparticles, Applied Physics Letters, Volume 122 (2023) no. 4 | DOI:10.1063/5.0128493
- Near-Field Radiative Heat Transfer between Disordered Multilayer Systems, Chinese Physics Letters, Volume 40 (2023) no. 6, p. 067802 | DOI:10.1088/0256-307x/40/6/067802
- Nonequilibrium Casimir–Lifshitz friction force and anomalous radiation heating of a small particle, Applied Physics Letters, Volume 121 (2022) no. 23, p. 231603 | DOI:10.1063/5.0115748
- Near-field radiative heat transfer between two α-quartz plates having hyperbolic and double-negative-permittivity bands, International Journal of Heat and Mass Transfer, Volume 196 (2022), p. 123235 | DOI:10.1016/j.ijheatmasstransfer.2022.123235
- Anomalous Radiative Heating of a Metal Particle Moving Near a Metal Plate, JETP Letters, Volume 116 (2022) no. 6, p. 405 | DOI:10.1134/s0021364022601695
- Near-field thermal radiation of gradient refractive index slab: Internal polaritons, Applied Physics Letters, Volume 119 (2021) no. 14 | DOI:10.1063/5.0065907
- Near-field radiation assisted smart skin for spacecraft thermal control, International Journal of Thermal Sciences, Volume 165 (2021), p. 106934 | DOI:10.1016/j.ijthermalsci.2021.106934
- Plasmonically enhanced mid-IR light source based on tunable spectrally and directionally selective thermal emission from nanopatterned graphene, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-73582-3
- Near-field radiative heat transfer between rough surfaces modeled using effective media with gradient distribution of dielectric function, International Journal of Heat and Mass Transfer, Volume 142 (2019), p. 118432 | DOI:10.1016/j.ijheatmasstransfer.2019.118432
- Thermal Energy Transport Across Combined Films: Thermal Characteristics, Journal of Non-Equilibrium Thermodynamics, Volume 44 (2019) no. 4, p. 439 | DOI:10.1515/jnet-2019-0021
Cité par 10 documents. Sources : Crossref
Commentaires - Politique