[Le rayonnement thermique revisité en champ proche]
Il est généralement admis que le rayonnement thermique est spatialement et temporellement incohérent. Nous montrons ici qu'en présence d'ondes de surface, il faut remettre en cause cette idée. Il est possible de concevoir des sources incandescentes qui sont directionnelles et spectralement sélectives. Nous décrivons également la découverte de l'exaltation de plusieurs ordres de grandeur de la densité d'énergie près d'une interface à une fréquence particulière ainsi que l'exaltation du flux radiatif échangé entre deux surfaces lorsque des ondes de surface existent. Ces résultats permettent d'envisager une nouvelle génération de sources incandescentes avec des applications possibles à la spectroscopie et à la conversion d'énergie par effet thermophotovoltaïque.
Thermal radiation is generally assumed to be both spatially and temporally incoherent. In this paper, we challenge this idea. It is possible to design incandescent sources that are directional and spectrally selective by taking advantage of surface waves. We also report the discovery of the enhancement by several orders of magnitude of the energy density close to an interface at a particular frequency as well as the enhancement of the radiative flux between two interfaces when surface phonon polaritons can be excited. These results lead to the design of a novel class of infrared incandescent sources with potential applications in spectroscopy and thermophotovoltaic energy conversion.
Mot clés : Nanophotonique, Rayonnement de corps noir, Cohérence, Plasmon de surface, Phonon polariton de surface, Tranfert radiatif
Jean-Jacques Greffet 1
@article{CRPHYS_2017__18_1_24_0, author = {Jean-Jacques Greffet}, title = {Revisiting thermal radiation in the near field}, journal = {Comptes Rendus. Physique}, pages = {24--30}, publisher = {Elsevier}, volume = {18}, number = {1}, year = {2017}, doi = {10.1016/j.crhy.2016.11.001}, language = {en}, }
Jean-Jacques Greffet. Revisiting thermal radiation in the near field. Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 24-30. doi : 10.1016/j.crhy.2016.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.11.001/
[1] The Theory of Heat Radiation, Dover Publications, New York, 1959
[2] The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, Stechert and Co., New York, 1916
[3] Theory of Electric Fluctuations and Thermal Radiation, Air Force Cambridge Research Center, Bedford, MA, USA, 1959
[4] Principles of Statistical Radiophysics, Vol. 3, Springer Verlag, Berlin, 1989
[5] Surf. Sci. Rep., 57 (2005), p. 59
[6] Near-Field Radiative Heat Transfer Across Nanometer Vacuum Gaps, William Andrew, Oxford, 2016
[7] Radiation Heat Transfer, CRC Press Book, Boca Raton, FL, USA, 2016
[8] Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2006
[9] Statistical Physics, Pergamon Press, Oxford, UK, 1980
[10] Sov. Phys. JETP, 29 (1955) no. 73, p. 94
[11] Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, UK, 1995
[12] Statistical Optics, Wiley, New York, 1985
[13] Opt. Commun., 17 (1976), p. 196
[14] Opt. Commun., 19 (1976), p. 431
[15] On the relation between the radiating and absorbing powers of different bodies for light and heat, Philos. Mag. Ser. 4, Volume 20 (1860), p. 1
[16] Radiative Transfer, McGraw-Hill Company, New York, 1967
[17] Thermal Radiation Heat Transfer, McGraw-Hill Company, New York, 1972
[18] Rev. Gén. Therm., 202 (1978), p. 755
[19] Phys. Rev. B, 55 (1997), p. 10105
[20] Nature, 416 (2002), p. 61
[21] F. Marquier, Doctoral Thesis, École centrale Paris, Chatenay-Malabry, France, 2004.
[22] Phys. Rev. B, 69 (2004)
[23] J. Opt. Soc. Am., 58 (1968), p. 1256
[24] J. Opt. Soc. Am., 68 (1978), p. 6
[25] J. Opt. Soc. Am. A, 15 (1998), p. 2735
[26] Phys. Rev. Lett., 82 (1999), p. 1660
[27] Phys. Rev. Lett., 85 (2000), p. 1548
[28] J.-P. Mulet, Doctoral Thesis, École centrale Paris, Chatenay-Malabry, France, 2003.
[29] Phys. Rev. B, 68 (2003)
[30] Nature (2006), p. 740
[31] Nano Lett., 12 (2012), p. 1475
[32] Phys. Rev. Lett., 110 (2013)
[33] Appl. Phys. Lett., 78 (2001), p. 2931
[34] Rev. Phys. Appl., 3 (1968), p. 225
[35] Phys. Lett. A, 30 (1969), p. 491
[36] Phys. Rev. B, 4 (1971), p. 3303
[37] J. Appl. Phys., 76 (1994), p. 7209
[38] Microscale Thermophys. Eng., 6 (2002), p. 209
[39] Phys. Rev. A, 69 (2004)
[40] Nano Lett., 9 (2009), p. 2909
[41] Nat. Photonics, 3 (2009), p. 514
[42] Nat. Nanotechnol., 10 (2015), p. 253
[43] Nature, 528 (2015), p. 387
[44] Nat. Nanotechnol., 11 (2016), p. 515
[45] Opt. Lett., 25 (2000), p. 369
[46] Phys. Rev. Lett., 105 (2010)
[47] Phys. Rev. Lett., 94 (2005)
[48] Nat. Commun., 6 (2015), p. 6755 | DOI
[49] Phys. Rev. B, 86 (2012)
[50] Phys. Rev. Appl., 4 (2015)
[51] Opt. Lett., 37 (2012), p. 1038
[52] Nat. Nanotechnol., 11 (2016), p. 320
[53] Appl. Phys. Lett., 104 (2014)
[54] Nature, 478 (2011), p. 191
[55] Nat. Mater., 13 (2001), p. 928
[56] J. Appl. Phys., 100 (2006)
[57] Nat. Nanotechnol., 9 (2014), p. 126
Cité par Sources :
Commentaires - Politique