Comptes Rendus
Use of large scale facilities for research in metallurgy
X-ray coherent scattering in metal physics
[Diffraction cohérente des rayons X en physique du métal]
Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 227-236.

En conditions de diffraction cohérente des rayons X, on observe les interférences entre les ondes diffractées par lʼéchantillon. Cela conduit à lʼobservation de tavelures là où une expérience classique donne une intensité diffuse ou une raie de Bragg élargie. Les tavelures correspondent à la configuration locale du désordre dans le volume irradié.

Dans cet article, après une brève description des techniques mises en oeuvre pour observer des tavelures dans une expérience de rayons X, quelques exemples dʼobservation de leur dynamique temporelle sont donnés. On discutera dʼabord le cas de fluctuations réversibles et ensuite de lʼutilisation de cette technique pour étudier la dynamique irréversible de la décomposition dʼalliages à démixtion ou à mise en ordre. On décrira quelque sepériences dʼimagerie des défauts et on discutera des voies ouvertes par lʼapparition des lasers à électrons libres.

In a coherent x-ray scattering experiment, interference of the waves diffracted across the sample is observed. This gives a speckle pattern in the observed scattering intensity, whereas a standard experiment leads to diffuse intensity or to broadening of a Bragg peak. Speckles correspond to the disorder configuration of the irradiated volume and their dynamics provide microscopic information of the time evolution of the sample microstructure.

After a brief description of the techniques used for the observation of speckles in an x-ray experiment, some examples of measured time dynamics are given. These concern reversible fluctuations and irreversible decomposition of unmixing or ordering alloys. A few experiments in defect imaging are described and the studies opened by free electron lasers are briefly discussed.

Publié le :
DOI : 10.1016/j.crhy.2011.11.009
Keywords: Coherent scattering, Speckles, X-ray photon correlation spectroscopy, Fluctuation dynamics
Mot clés : Diffraction cohérente, Spectroscopie de correlation des photons X, Dynamique des fluctuations
Frédéric Livet 1 ; Mark Sutton 2

1 SIMaP, Grenoble-INP, CNRS, UJF, BP 75, 38402 Saint Martin DʼHères, France
2 Physics Department, McGill University, Montreal, Québec H3A 2T8, Canada
@article{CRPHYS_2012__13_3_227_0,
     author = {Fr\'ed\'eric Livet and Mark Sutton},
     title = {X-ray coherent scattering in metal physics},
     journal = {Comptes Rendus. Physique},
     pages = {227--236},
     publisher = {Elsevier},
     volume = {13},
     number = {3},
     year = {2012},
     doi = {10.1016/j.crhy.2011.11.009},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Livet
AU  - Mark Sutton
TI  - X-ray coherent scattering in metal physics
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 227
EP  - 236
VL  - 13
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.11.009
LA  - en
ID  - CRPHYS_2012__13_3_227_0
ER  - 
%0 Journal Article
%A Frédéric Livet
%A Mark Sutton
%T X-ray coherent scattering in metal physics
%J Comptes Rendus. Physique
%D 2012
%P 227-236
%V 13
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.11.009
%G en
%F CRPHYS_2012__13_3_227_0
Frédéric Livet; Mark Sutton. X-ray coherent scattering in metal physics. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 227-236. doi : 10.1016/j.crhy.2011.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.11.009/

[1] F. Livet Diffraction with a coherent x-ray beam: dynamics and imaging, Acta Crystallogr. A, Volume 63 (2007), pp. 87-107

[2] M. Sutton; S.G.J. Mochrie; T. Greytak; S.E. Nagler; L.E. Berman; G.E. Held; G.B. Stephenson Observation of speckle by diffraction with coherent x-rays, Nature, Volume 352 (1991), pp. 608-610

[3] F. Livet; F. Bley; J. Mainville; M. Sutton; S. Mochrie; E. Geissler; G. Dolino; D. Abernathy; G. Grübel Using direct illumination ccds as high-resolution area detectors for x-ray scattering, Nucl. Instr. Meth. A, Volume 451 (2000), pp. 596-609

[4] R. de Vries; S. Weijers; K. Bethke; V. Kogan; J. Vasterink; A. Kharchenko; M. Fransen; J. Bethke Medipix 2 in x-ray diffraction, Nucl. Instr. Meth. A, Volume 576 (2007), pp. 164-168

[5] C. Ponchut; J. Clément; J.-M. Rigal; E. Papillon; J. Vallerga; D. LaMarra; B. Mikulec Photon-counting x-ray imaging at kilohertz frame rates, Nucl. Instr. Meth. A, Volume 576 (2007), pp. 109-112

[6] F. Livet; D. Bloch A kinetic analysis of Al–Al3Li unmixing, Scripta Met., Volume 10 (1985), p. 1147

[7] F. Livet; F. Bley; A. Létoublon; J.P. Simon; J.F. Bérar Coherent small-angle scattering on a bending-magnet beamline at the ESRF, J. Synchr. Rad., Volume 5 (1998), pp. 1337-1345

[8] D.L. Abernathy; G. Grübel; S. Brauer; I. McNulty; G.B. Stephenson; S.G.J. Mochrie; A.R. Sandy; N. Mulders; M. Sutton Small angles x-ray scattering using coherent undulator radiation at the ESRF, J. Synchr. Rad., Volume 5 (1998), pp. 37-47

[9] A. Malik; A.R. Sandy; L.B. Lurio; G.B. Stephenson; S.G.J. Mochrie; I. McNulty; M. Sutton Coherent x-ray study of fluctuations during domain coarsening, Phys. Rev. Lett., Volume 81 (1998), pp. 5832-5835

[10] E.M. Dufresne; T. Nurushev; R. Clarke; S.B. Dierker Concentration fluctuations in the binary mixture hexane–nitrobenzene with static and dynamic x-ray scattering, Phys. Rev. E, Volume 65 (2002), p. 061507

[11] K. Ludwig; F. Livet; F. Bley; J.P. Simon; R. Caudron; D.L. Bollocʼh; A. Moussaid X-ray intensity fluctuation spectroscopy studies of ordering kinetics in a Cu–Pd alloy, Phys. Rev., Volume 72 (2005), p. 144201

[12] B.J. Berne; R. Pecora Dynamic Light Scattering, Dover Publications, New York, 2000

[13] S. Dierker; R. Pindak; R. Fleming; I. Robinson; L. Berman X-ray photon correlation spectroscopy study of Brownian motion of gold colloids in glycerol, Phys. Rev. Lett., Volume 75 (1995), p. 449

[14] G. Grübel; F. Zontone Correlation spectroscopy with coherent x-rays, J. Alloys Compounds, Volume 362 (2004), pp. 3-11

[15] S. Francoual; F. Livet; M. de Boissieu; F. Yakhou; F. Bley; A. Létoublon; R. Caudron; J. Gastaldi Dynamics of phason fluctuations in the i-AIP dMn quasicrystal, Phys. Rev. Lett., Volume 91 (2003), p. 225501

[16] A. Létoublon; F. Yakhou; F. Livet; F. Bley; M. de Boissieu; L. Mancini; C. Vettier; J. Gastaldii Coherent x-ray diffraction and phason fluctuations in quasicrystals, Europhys. Lett., Volume 54 (2001), pp. 753-759

[17] P.C. Hohenberg; B.I. Halperin Theory of dynamic critical phenomena, Rev. Mod. Phys., Volume 49 (1977), pp. 436-479

[18] G. Brown; P.A. Rikvold; M. Sutton; M. Grant Speckle from phase-ordering systems, Phys. Rev. E, Volume 65 (1997), pp. 6601-6612

[19] G. Brown; P.A. Rikvold; M. Sutton; M. Grant Evolution of speckle during spinodal decomposition, Phys. Rev. E, Volume 60 (1999), pp. 5151-5162

[20] F. Livet; F. Bley; R. Caudron; E. Geissler; D. Abernathy; C. Detlefs; G. Grübel; M. Sutton Kinetic evolution of unmixing in an AlLi alloy using x-ray intensity fluctuation spectroscopy, Phys. Rev. E, Volume 63 (2001), p. 036108

[21] A. Fluerasu; M. Sutton; E. Dufresne X-ray intensity fluctuation spectroscopy studies on phase-ordering systems, Phys. Rev. Lett., Volume 94 (2005), p. 055501

[22] L.M. Stadler; B. Sepiol; R. Weinkamer; M. Hartmann; P. Fratzl; J.W. Kantelhardt; F. Zontone; G. Grübel; G. Vogl Long-term correlations distinguish coarsening mechanisms in alloys, Phys. Rev. B, Volume 68 (2003), p. 180101

[23] L.M. Stadler; B. Sepiol; J.W. Kantelhardt; I. Zizak; G. Grübel; G. Vogl Revealing antiphase-domain dynamics in alloys by combining advanced statistical techniques with x-ray photon correlation spectroscopy, Phys. Rev. B, Volume 69 (2004), p. 224301

[24] I.K. Robinson; I.A. Vartanyants; G.J. Williams; M.A. Pfeifer; J.A. Pitney Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction, Phys. Rev. Lett., Volume 87 (2001), p. 195505

[25] J. Miao; D. Sayre; H.N. Chapman Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects, J. Opt. Soc. Amer. A, Volume 15 (1998), pp. 1662-1669

[26] P. Thibault; M. Dierolf; O. Bunk; A. Menzel; F. Pfeiffer Probe retrieval in ptychographic coherent diffractive imaging, Ultramicroscopy, Volume 109 (2009) no. 4, pp. 338-343

[27] H.N. Chapman; K.A. Nugent Coherent lensless x-ray imaging, Nature Photon., Volume 4 (2010), pp. 833-839

[28] V.L.R. Jacques; S. Ravy; D. Le Bollocʼh; E. Pinsolle; M. Sauvage-Simkin; F. Livet Bulk dislocation core dissociation probed by coherent x rays in silicon, Phys. Rev. Lett., Volume 106 (2011), p. 065502

[29] I.K. Robinson; Y. Da; T. Spila; J.E. Greene Coherent diffraction of individual dislocation strain fields, J. Phys. D: Appl. Phys., Volume 38 (2005), p. A7-A10

[30] M. Sutton; Y. Li; J.D. Brock; R.E. Thorne X-ray intensity fluctuation spectroscopy measurements of the charge density wave of NbSe3, J. Phys. IV France, Volume 12 (2002), pp. 3-8

[31] D. Le Bollocʼh; S. Ravy; J. Dumas; J. Marcus; F. Livet; C. Detlefs; F. Yakhou; L. Paolasini Charge density wave dislocation as revealed by coherent x-ray diffraction, Phys. Rev. Lett., Volume 95 (2005), p. 116401

[32] D. Le Bollocʼh; V.L.R. Jacques; N. Kirova; J. Dumas; S. Ravy; J. Marcus; F. Livet Observation of correlations up to the micrometer scale in sliding charge-density waves, Phys. Rev. Lett., Volume 100 (2008) no. 9, p. 096403

[33] V. Jacques; D. Le Bollocʼh; S. Ravy; C. Giles; F. Livet; S. Wilkins Spin density wave dislocation in chromium probed by coherent x-ray diffraction, Eur. Phys. J. B, Volume 70 (2009), pp. 317-325

[34] R.T.T.I.K. Robinson; R. Feidenhansʼl X-ray interference method for studying interface structures, Phys. Rev. B, Volume 38 (1988), pp. 3632-3635

[35] F. Livet; G. Beutier; M. de Boissieu; S. Ravy; D. Le Bollocʼh; V. Jacques Coherent scattering from silicon monocrystal surface, Surf. Sci., Volume 605 (2011), pp. 390-395

[36] M.S. Pierce; K.C. Chang; D. Hennessy; V. Komanicky; M. Sprung; A. Sandy; H. You Surface x-ray speckles: Coherent surface diffraction from Au(001), Phys. Rev. Lett., Volume 103 (2009) no. 16, p. 165501

[37] S.M. Gruner Concepts and applications of Energy Recovery Linacs (ERLs), AIP Conf. Proc., Volume 708 (2004), pp. 153-156

[38] S. Benson; M. Borland; D. Douglas; D. Dowell; C. Hernandez-Garcia; D. Kayran; G. Krafft; R. Legg; E. Moog; T. Obina; R. Rimmer; V. Yakimenko X-ray sources by energy recovered linacs and their needed R&D, Nucl. Instr. Meth. A, Volume 637 (2011) no. 1, pp. 1-11

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A review of X-ray intensity fluctuation spectroscopy

Mark Sutton

C. R. Phys (2008)


X-Ray Photon Correlation Spectroscopy at the European X-Ray Free-Electron Laser (XFEL) facility

Gerhard Grübel

C. R. Phys (2008)


Study of the structure and physical properties of quasicrystals using large scale facilities

Marc de Boissieu

C. R. Phys (2012)