[Diffraction cohérente des rayons X en physique du métal]
En conditions de diffraction cohérente des rayons X, on observe les interférences entre les ondes diffractées par lʼéchantillon. Cela conduit à lʼobservation de tavelures là où une expérience classique donne une intensité diffuse ou une raie de Bragg élargie. Les tavelures correspondent à la configuration locale du désordre dans le volume irradié.
Dans cet article, après une brève description des techniques mises en oeuvre pour observer des tavelures dans une expérience de rayons X, quelques exemples dʼobservation de leur dynamique temporelle sont donnés. On discutera dʼabord le cas de fluctuations réversibles et ensuite de lʼutilisation de cette technique pour étudier la dynamique irréversible de la décomposition dʼalliages à démixtion ou à mise en ordre. On décrira quelque sepériences dʼimagerie des défauts et on discutera des voies ouvertes par lʼapparition des lasers à électrons libres.
In a coherent x-ray scattering experiment, interference of the waves diffracted across the sample is observed. This gives a speckle pattern in the observed scattering intensity, whereas a standard experiment leads to diffuse intensity or to broadening of a Bragg peak. Speckles correspond to the disorder configuration of the irradiated volume and their dynamics provide microscopic information of the time evolution of the sample microstructure.
After a brief description of the techniques used for the observation of speckles in an x-ray experiment, some examples of measured time dynamics are given. These concern reversible fluctuations and irreversible decomposition of unmixing or ordering alloys. A few experiments in defect imaging are described and the studies opened by free electron lasers are briefly discussed.
Mots-clés : Diffraction cohérente, Spectroscopie de correlation des photons X, Dynamique des fluctuations
Frédéric Livet 1 ; Mark Sutton 2
@article{CRPHYS_2012__13_3_227_0, author = {Fr\'ed\'eric Livet and Mark Sutton}, title = {X-ray coherent scattering in metal physics}, journal = {Comptes Rendus. Physique}, pages = {227--236}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.11.009}, language = {en}, }
Frédéric Livet; Mark Sutton. X-ray coherent scattering in metal physics. Comptes Rendus. Physique, Use of large scale facilities for research in metallurgy / Utilisation des grands instruments pour la recherche en métallurgie , Volume 13 (2012) no. 3, pp. 227-236. doi : 10.1016/j.crhy.2011.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.11.009/
[1] Diffraction with a coherent x-ray beam: dynamics and imaging, Acta Crystallogr. A, Volume 63 (2007), pp. 87-107
[2] Observation of speckle by diffraction with coherent x-rays, Nature, Volume 352 (1991), pp. 608-610
[3] Using direct illumination ccds as high-resolution area detectors for x-ray scattering, Nucl. Instr. Meth. A, Volume 451 (2000), pp. 596-609
[4] Medipix 2 in x-ray diffraction, Nucl. Instr. Meth. A, Volume 576 (2007), pp. 164-168
[5] Photon-counting x-ray imaging at kilohertz frame rates, Nucl. Instr. Meth. A, Volume 576 (2007), pp. 109-112
[6] A kinetic analysis of Al–Al3Li unmixing, Scripta Met., Volume 10 (1985), p. 1147
[7] Coherent small-angle scattering on a bending-magnet beamline at the ESRF, J. Synchr. Rad., Volume 5 (1998), pp. 1337-1345
[8] Small angles x-ray scattering using coherent undulator radiation at the ESRF, J. Synchr. Rad., Volume 5 (1998), pp. 37-47
[9] Coherent x-ray study of fluctuations during domain coarsening, Phys. Rev. Lett., Volume 81 (1998), pp. 5832-5835
[10] Concentration fluctuations in the binary mixture hexane–nitrobenzene with static and dynamic x-ray scattering, Phys. Rev. E, Volume 65 (2002), p. 061507
[11] X-ray intensity fluctuation spectroscopy studies of ordering kinetics in a Cu–Pd alloy, Phys. Rev., Volume 72 (2005), p. 144201
[12] Dynamic Light Scattering, Dover Publications, New York, 2000
[13] X-ray photon correlation spectroscopy study of Brownian motion of gold colloids in glycerol, Phys. Rev. Lett., Volume 75 (1995), p. 449
[14] Correlation spectroscopy with coherent x-rays, J. Alloys Compounds, Volume 362 (2004), pp. 3-11
[15] Dynamics of phason fluctuations in the i-AIP dMn quasicrystal, Phys. Rev. Lett., Volume 91 (2003), p. 225501
[16] Coherent x-ray diffraction and phason fluctuations in quasicrystals, Europhys. Lett., Volume 54 (2001), pp. 753-759
[17] Theory of dynamic critical phenomena, Rev. Mod. Phys., Volume 49 (1977), pp. 436-479
[18] Speckle from phase-ordering systems, Phys. Rev. E, Volume 65 (1997), pp. 6601-6612
[19] Evolution of speckle during spinodal decomposition, Phys. Rev. E, Volume 60 (1999), pp. 5151-5162
[20] Kinetic evolution of unmixing in an AlLi alloy using x-ray intensity fluctuation spectroscopy, Phys. Rev. E, Volume 63 (2001), p. 036108
[21] X-ray intensity fluctuation spectroscopy studies on phase-ordering systems, Phys. Rev. Lett., Volume 94 (2005), p. 055501
[22] Long-term correlations distinguish coarsening mechanisms in alloys, Phys. Rev. B, Volume 68 (2003), p. 180101
[23] Revealing antiphase-domain dynamics in alloys by combining advanced statistical techniques with x-ray photon correlation spectroscopy, Phys. Rev. B, Volume 69 (2004), p. 224301
[24] Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction, Phys. Rev. Lett., Volume 87 (2001), p. 195505
[25] Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects, J. Opt. Soc. Amer. A, Volume 15 (1998), pp. 1662-1669
[26] Probe retrieval in ptychographic coherent diffractive imaging, Ultramicroscopy, Volume 109 (2009) no. 4, pp. 338-343
[27] Coherent lensless x-ray imaging, Nature Photon., Volume 4 (2010), pp. 833-839
[28] Bulk dislocation core dissociation probed by coherent x rays in silicon, Phys. Rev. Lett., Volume 106 (2011), p. 065502
[29] Coherent diffraction of individual dislocation strain fields, J. Phys. D: Appl. Phys., Volume 38 (2005), p. A7-A10
[30] X-ray intensity fluctuation spectroscopy measurements of the charge density wave of NbSe3, J. Phys. IV France, Volume 12 (2002), pp. 3-8
[31] Charge density wave dislocation as revealed by coherent x-ray diffraction, Phys. Rev. Lett., Volume 95 (2005), p. 116401
[32] Observation of correlations up to the micrometer scale in sliding charge-density waves, Phys. Rev. Lett., Volume 100 (2008) no. 9, p. 096403
[33] Spin density wave dislocation in chromium probed by coherent x-ray diffraction, Eur. Phys. J. B, Volume 70 (2009), pp. 317-325
[34] X-ray interference method for studying interface structures, Phys. Rev. B, Volume 38 (1988), pp. 3632-3635
[35] Coherent scattering from silicon monocrystal surface, Surf. Sci., Volume 605 (2011), pp. 390-395
[36] Surface x-ray speckles: Coherent surface diffraction from Au(001), Phys. Rev. Lett., Volume 103 (2009) no. 16, p. 165501
[37] Concepts and applications of Energy Recovery Linacs (ERLs), AIP Conf. Proc., Volume 708 (2004), pp. 153-156
[38] X-ray sources by energy recovered linacs and their needed R&D, Nucl. Instr. Meth. A, Volume 637 (2011) no. 1, pp. 1-11
- High-Energy Photon Attenuation Properties of Lead-Free and Self-Healing Poly (Vinyl Alcohol) (PVA) Hydrogels: Numerical Determination and Simulation, Gels, Volume 8 (2022) no. 4, p. 197 | DOI:10.3390/gels8040197
- Comparative X-ray Shielding Properties of Single-Layered and Multi-Layered Bi2O3/NR Composites: Simulation and Numerical Studies, Polymers, Volume 14 (2022) no. 9, p. 1788 | DOI:10.3390/polym14091788
- Rare-Earth Oxides as Alternative High-Energy Photon Protective Fillers in HDPE Composites: Theoretical Aspects, Polymers, Volume 13 (2021) no. 12, p. 1930 | DOI:10.3390/polym13121930
- Theoretical Determination of High-Energy Photon Attenuation and Recommended Protective Filler Contents for Flexible and Enhanced Dimensionally Stable Wood/NR and NR Composites, Polymers, Volume 13 (2021) no. 6, p. 869 | DOI:10.3390/polym13060869
- Superior X-ray radiation shielding of biocompatible platform based on reinforced polyaniline by decorated graphene oxide with interconnected tungsten–bismuth–tin complex, Radiation Physics and Chemistry, Volume 188 (2021), p. 109588 | DOI:10.1016/j.radphyschem.2021.109588
- Focusing a round coherent beam by spatial filtering the horizontal source, Journal of Synchrotron Radiation, Volume 27 (2020) no. 6, p. 1528 | DOI:10.1107/s1600577520012163
- Structural Dynamics of Materials Probed by X-Ray Photon Correlation Spectroscopy, Synchrotron Light Sources and Free-Electron Lasers (2020), p. 1989 | DOI:10.1007/978-3-030-23201-6_29
- Hard X-Ray Photon Correlation Spectroscopy Methods for Materials Studies, Annual Review of Materials Research, Volume 48 (2018) no. 1, p. 167 | DOI:10.1146/annurev-matsci-070317-124334
- Dynamics in hard condensed matter probed by X-ray photon correlation spectroscopy: Present and beyond, Current Opinion in Solid State and Materials Science, Volume 22 (2018) no. 5, p. 202 | DOI:10.1016/j.cossms.2018.06.002
- Measuring the dynamical critical exponent of an ordering alloy using x-ray photon correlation spectroscopy, Physical Review B, Volume 98 (2018) no. 1 | DOI:10.1103/physrevb.98.014202
- Structural Dynamics of Materials Probed by X-Ray Photon Correlation Spectroscopy, Synchrotron Light Sources and Free-Electron Lasers (2018), p. 1 | DOI:10.1007/978-3-319-04507-8_29-2
- On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis, Journal of Applied Crystallography, Volume 50 (2017) no. 2, p. 357 | DOI:10.1107/s1600576717000577
- Structural Dynamics of Materials Probed by X-Ray Photon Correlation Spectroscopy, Synchrotron Light Sources and Free-Electron Lasers (2016), p. 1617 | DOI:10.1007/978-3-319-14394-1_29
- Interaction of Molecular Oxygen with a Hexagonally Reconstructed Au(001) Surface, The Journal of Physical Chemistry C, Volume 120 (2016) no. 40, p. 23001 | DOI:10.1021/acs.jpcc.6b07020
- X-Ray Photon Correlation Spectroscopy for the Characterization of Soft and Hard Condensed Matter, X-ray and Neutron Techniques for Nanomaterials Characterization (2016), p. 95 | DOI:10.1007/978-3-662-48606-1_3
- Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid, Microscopy and Microanalysis, Volume 21 (2015) no. 4, p. 1026 | DOI:10.1017/s1431927615000641
- Structural Dynamics of Materials Probed by X-Ray Photon Correlation Spectroscopy, Synchrotron Light Sources and Free-Electron Lasers (2015), p. 1 | DOI:10.1007/978-3-319-04507-8_29-1
- X-ray photon correlation spectroscopy, Journal of Synchrotron Radiation, Volume 21 (2014) no. 5, p. 1057 | DOI:10.1107/s1600577514018232
- XPCS Investigation of the Dynamics of Filler Particles in Stretched Filled Elastomers, Macromolecules, Volume 45 (2012) no. 21, p. 8691 | DOI:10.1021/ma3013674
Cité par 19 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier