Comptes Rendus
Use of large scale facilities for research in metallurgy
Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light
[La structure atomique des verres métalliques massifs et de leurs états de liquides surfondus sondée par diffraction de la lumière haute-énergie du synchrotron]
Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 218-226.

Comme les verres classiques, de nombreux verres métalliques massifs manifestent une température de transition vitreuse Tg au cours du chauffage avant de se cristalliser. Si la nature exacte de la structure atomique dʼun verre métallique dépend de son histoire thermo-mécanique (vitesse de trempe, la déformation plastique, …), une unique et reproductible structure atomique moyenne est atteinte si la température de transition vitreuse peut être approchée de manière réversible. Toutefois, un verre métallique est toujours métastable et se cristallise dans un temps, t, au voisinage ou au-dessus de sa Tg de telle manière que toute lʼinformation dans les espaces réciproque et réel sur lʼétat totalement vitreux à TTg doit être obtenue dans des temps dʼacquisition τat et cette condition est en général difficile à atteindre avec les dispositifs classiques de diffraction des rayons-X. Nous rapportons ici les expériences de diffraction de la lumière synchrotron de haute énergie en transmission pour sonder la structure atomique de verres métalliques massifs. Des exemples sont donnés de la détermination de la transition vitreuse isochore Tg, la mesure du volume-libre dʼexcès piégé par la trempe. Nous présentons également lʼévolution de la structure atomique dans la région du liquide sous-refroidi (T>Tg) et son rôle dans lʼamélioration de la formabilité des verres métalliques.

Like non-metallic glasses, many bulk metallic glasses manifest a glass-transition temperature Tg during heating prior to crystallisation. While the exact nature of the atomic structure of a metallic glass depends on its thermo-mechanical history (quench-rate, plastic deformation, …), a unique and reproducible average atomic structure is attained if the glass transition temperature can be approached in a reversible manner. However, a metallic glass is always metastable and crystallises within a time t near or above its Tg in such a way that any reciprocal or real-space information on the fully glassy state at TTg must be completed within acquisition times τat and this condition is in general difficult to attain with conventional X-ray diffraction devices.

Here we report on experiments using high-energy, high-flux synchrotron light in the transmission for probing of the atomic structure of bulk metallic glasses. Examples are given of the determination of the isochoric glass transition Tg and the quenched-in free-volume. Finally, we report on the evolution of the atomic structure in the supercooled liquid region (T>Tg) and its role in the enhancement of glass formability.

Publié le :
DOI : 10.1016/j.crhy.2011.12.010
Keywords: Bulk metallic glasses, Atomic structure, Synchrotron light, Supercooled liquid
Mot clés : Verres métalliques massifs, Structure atomique, Lumière du synchrotron, Liquide surfondu
K. Georgarakis 1, 2 ; A.R. Yavari 1 ; D.V. Louzguine 2 ; G. Vaughan 3 ; W.J. Botta 4

1 SIMAP-CNRS, institut polytechnique de Grenoble, BP 75, Saint-Martin-dʼHères campus, 38402 Saint-Martin-dʼHères, France
2 WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai, Japan
3 European Synchrotron Radiation Facility, Grenoble, France
4 DeMa, Univ. Federal de Sao Carlos (UFSCar), SP, Brazil
@article{CRPHYS_2012__13_3_218_0,
     author = {K. Georgarakis and A.R. Yavari and D.V. Louzguine and G. Vaughan and W.J. Botta},
     title = {Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light},
     journal = {Comptes Rendus. Physique},
     pages = {218--226},
     publisher = {Elsevier},
     volume = {13},
     number = {3},
     year = {2012},
     doi = {10.1016/j.crhy.2011.12.010},
     language = {en},
}
TY  - JOUR
AU  - K. Georgarakis
AU  - A.R. Yavari
AU  - D.V. Louzguine
AU  - G. Vaughan
AU  - W.J. Botta
TI  - Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 218
EP  - 226
VL  - 13
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.12.010
LA  - en
ID  - CRPHYS_2012__13_3_218_0
ER  - 
%0 Journal Article
%A K. Georgarakis
%A A.R. Yavari
%A D.V. Louzguine
%A G. Vaughan
%A W.J. Botta
%T Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light
%J Comptes Rendus. Physique
%D 2012
%P 218-226
%V 13
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.12.010
%G en
%F CRPHYS_2012__13_3_218_0
K. Georgarakis; A.R. Yavari; D.V. Louzguine; G. Vaughan; W.J. Botta. Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 218-226. doi : 10.1016/j.crhy.2011.12.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.010/

[1] A. Inoue Acta Mater., 48 (2000), p. 279

[2] A.H. Cottrell The Mechanical Properties of Matter, John Wiley and Sons, 1964

[3] W.L. Johnson; K. Samwer Phys. Rev. Lett., 95 (2005), p. 195501

[4] K. Georgarakis; M. Aljerf; Y. Li; A. LeMoulec; F. Charlot; A.R. Yavari; K. Chornokhvostenko; E. Tabachnikova; G.A. Evangelakis; D.B. Miracle; A.L. Greer; T. Zhang Appl. Phys. Lett., 93 (2008), p. 031907

[5] D.B. Miracle; A. Concustell; Y. Zhang; A.R. Yavari; A.L. Greer Acta Mater., 59 (2011), p. 2831

[6] A.L. Greer Materials Today, 12 (2009), p. 14

[7] A.R. Yavari; J.J. Lewandowski; J. Eckert MRS Bull., 32 (2007), p. 635

[8] A. Inoue; N. Nishiyama MRS Bull., 32 (2007), p. 651

[9] W.L. Johnson MRS Bull., 24 (1999), p. 42

[10] D.B. Miracle Nature Mat., 3 (2004), p. 697

[11] A.R. Yavari Nature Mat., 4 (2005), p. 2

[12] H.W. Sheng; W.K. Luo; F.M. Alamgir; J.M. Bai; E. Ma Nature, 439 (2006), p. 419

[13] A.R. Yavari Nature, 439 (2006), p. 405

[14] D. Ma; A.D. Stoica; X.-L. Wang Nature Mater., 8 (2009), p. 30

[15] D.V. Louzguine-Luzgin; J. Antonowicz; K. Georgarakis; G. Vaughan; A.R. Yavari; A. Inoue J. Alloys Comp., 466 (2008), p. 106

[16] A. Hirata; P. Guan; T. Fujita; Y. Hirotsu; A. Inoue; A.R. Yavari; T. Sakurai; M.W. Chen Nature Mater., 10 (2011), p. 28

[17] J.D. Bernal Nature, 185 (1960), p. 68

[18] P. Desré; A.R. Yavari; P. Hicter Philos. Mag. B, 61 (1990), p. 1

[19] A.R. Yavari Phys. Lett. A, 95 (1983), p. 165

[20] W. Klement; R.H. Willens; P. Duwez Nature, 187 (1960), p. 869

[21] H.S. Chen; D. Turnbull Acta Mater., 17 (1969), p. 1021

[22] D.E. Polk; D. Turnbull Acta Met., 20 (1972), p. 493

[23] A.R. Yavari; A. Inoue Mater. Res. Soc. Symposium Proceedings, 554 (1999), p. 21

[24] N. Nishiyama; A. Inoue Acta Mater., 47 (1999), p. 1487

[25] D. Turnbull Scientific American, 212 (1965), p. 38

[26] J. Jäckle Rep. Progr. Phys., 49 (1986), p. 171

[27] J.L. Tallon Nature, 342 (1989), p. 568

[28] H.J. Fecht; W.L. Johnson Nature, 334 (1988), p. 59

[29] A.R. Yavari; A. Le Moulec; A. Inoue; N. Nishiyama; N. Lupu; E. Matsubara; W.J. Botta; G. Vaughan; M. Di Michiel; A. Kvick Acta Mater., 53 (2005), p. 1611

[30] R. Simmons; R. Balluffi Phys. Rev., 117 (1960), p. 52

[31] A. Guinier Théories et Techniques de la Radio-christalographie, Dunod, 1964

[32] A.R. Yavari Acta Metall., 36 (1988), p. 1863

[33] J.L. Uriarte; A.R. Yavari; N. Nishiyama; G. Heunen; G. Vaughan; Å. Kvick; A. Inoue Scripta Mater., 48 (2003), p. 809

[34] S.R. Elliott Physics of Amorphous Materials, John Wiley & Sons, New York, 1990 (p. 35)

[35] M.H. Cohen; D. Turnbull J. Chem. Phys., 31 (1959), p. 1164

[36] F. Spaepen Acta Metall., 25 (1977), p. 407

[37] A. Argon Acta Metall., 27 (1979), p. 47

[38] A.R. Yavari J. Mater. Res., 1 (1986), p. 746

[39] T.W. Wu; F. Spaepen Philos. Mag. B, 61 (1990), p. 739

[40] A.R. Yavari Mater. Sci. Eng., 98 (1988), p. 491

[41] M. Aljerf; K. Georgarakis; A.R. Yavari Acta Mater., 59 (2011), p. 3817

[42] A. Seeger; D. Schumacher Lattice Defects in Quenched Metals (R.M.J. Cotterill; M. Doyama; J.J. Jackson; M. Meshii, eds.), Academic Press, 1965, pp. 15-75

[43] P. Vinet; J.R. Smith; J. Ferrante; J.H. Rose Phys. Rev. B., 35 (1987), p. 1945

[44] C.H. Bennett; P. Chaudhari; V. Moruzzi; P. Steinhardt Philos. Mag. A, 40 (1979), p. 485

[45] H.S. Chen J. Appl. Phys., 49 (1978), p. 3289

[46] N. Nishiyama; M. Horino; A. Inoue Mater. Trans. JIM, 41 (2000), p. 1432

[47] A.I. Taub; F. Spaepen Acta Metall. Mater., 28 (1980), p. 1781

[48] A. Van Den Buekel; J. Sietsma Acta Metall. Mater., 38 (1990), p. 383

[49] A.R. Yavari; B. Bochu Philos. Mag. A, 59 (1989), p. 697

[50] T. Benameur; A.R. Yavari J. Mater. Res., 7 (1992), p. 2971

[51] A.R. Yavari Acta Metall. Mater., 41 (1993), p. 1391

[52] A.R. Yavari; A. Le Moulec; A. Inoue; F. Walter; J. Botta; G. Vaughan; A. Kvick Mat. Sci. Eng. A, 304–306 (2001), p. 34

[53] Y. Waseda The Structure of Non-Crystalline Materials, McGraw–Hill, New York, 1980 (p. 670)

[54] K. Georgarakis; D.V. Louzguine; J. Antonowicz; G. Vaughan; A.R. Yavari; T. Egami; A. Inoue Acta Mater., 59 (2011), p. 708

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

New pathways to control the evolution of the atomic motion in metallic glasses

Antoine Cornet; Beatrice Ruta

C. R. Phys (2023)


Organic Glass-Forming Liquids and the Concept of Fragility

Christiane Alba-Simionesco

C. R. Phys (2023)