[De lʼintérêt de lʼimagerie X synchrotron pour lʼétude de la solidification dʼalliages métalliques]
Les récents développements de sources synchrotron plus puissantes ont apporté une amélioration considérable des performances en imagerie X. Ceci sʼest traduit par une augmentation continue de lʼimpact scientifique des expériences effectuées avec une source synchrotron dans de nombreux domaines de recherche sur les matériaux, et en particulier lʼétude de la solidification. Il est bien établi que lʼimagerie X est une méthode de choix pour les études in situ et en temps réel de la formation des microstructures de solidification dans les alliages métalliques, avec des résolutions spatio-temporelles pertinentes. Dans cet article, nous présentons des résultats illustrant les capacités actuelles de lʼimagerie X synchrotron dans de ce domaine de recherche, chacun dʼentre eux utilisant des techniques différentes (radiographie, topographie et tomographie X). Ces résultats démontrent le fort potentiel de ces techniques dʼanalyse pour lʼinvestigation de phénomènes dynamiques en science des matériaux.
Recent developments of more powerful synchrotron sources have led to vast improvements in the performance of X-ray imaging. This is manifested by a continuous increase in the impact of synchrotron experiments in many research areas on materials, in particular solidification science. X-ray imaging has been established as a method of choice for in situ and real-time studies of solidification microstructure formation in metallic alloys, with spatio-temporal resolutions at the scales of relevance. In this article, we present illustrative results of the current capabilities of synchrotron X-ray imaging in this field of research, each of them using different X-ray techniques (radiography, topography and tomography). Those results demonstrate the high potential of these techniques for the investigation of dynamical phenomena in materials processing.
Mots-clés : Solidification, Synchrotron, Radiographie, Topographie, Tomographie, Microstructure, Alliages
Henri Nguyen-Thi 1, 2 ; Luc Salvo 3 ; Ragnvald H. Mathiesen 4 ; Lars Arnberg 5 ; Bernard Billia 1, 2 ; Michel Suery 3 ; Guillaume Reinhart 1, 2
@article{CRPHYS_2012__13_3_237_0, author = {Henri Nguyen-Thi and Luc Salvo and Ragnvald H. Mathiesen and Lars Arnberg and Bernard Billia and Michel Suery and Guillaume Reinhart}, title = {On the interest of synchrotron {X-ray} imaging for the study of solidification in metallic alloys}, journal = {Comptes Rendus. Physique}, pages = {237--245}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.11.010}, language = {en}, }
TY - JOUR AU - Henri Nguyen-Thi AU - Luc Salvo AU - Ragnvald H. Mathiesen AU - Lars Arnberg AU - Bernard Billia AU - Michel Suery AU - Guillaume Reinhart TI - On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys JO - Comptes Rendus. Physique PY - 2012 SP - 237 EP - 245 VL - 13 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2011.11.010 LA - en ID - CRPHYS_2012__13_3_237_0 ER -
%0 Journal Article %A Henri Nguyen-Thi %A Luc Salvo %A Ragnvald H. Mathiesen %A Lars Arnberg %A Bernard Billia %A Michel Suery %A Guillaume Reinhart %T On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys %J Comptes Rendus. Physique %D 2012 %P 237-245 %V 13 %N 3 %I Elsevier %R 10.1016/j.crhy.2011.11.010 %G en %F CRPHYS_2012__13_3_237_0
Henri Nguyen-Thi; Luc Salvo; Ragnvald H. Mathiesen; Lars Arnberg; Bernard Billia; Michel Suery; Guillaume Reinhart. On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys. Comptes Rendus. Physique, Use of large scale facilities for research in metallurgy / Utilisation des grands instruments pour la recherche en métallurgie , Volume 13 (2012) no. 3, pp. 237-245. doi : 10.1016/j.crhy.2011.11.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.11.010/
[1] Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys., Volume 35 (1964), p. 444
[2] Lectures in the theory of pattern formation (J.V.a.R.S.J. Souletie, ed.), Chance and Matter, Les Houches Summer School, North Holland, Amsterdam, 1986, p. 629
[3] Microsegregation in Peltier interface demarcation, Journal of Crystal Growth, Volume 216 (2000), pp. 483-494
[4] Transparent compounds that freeze like metals, Acta Metall., Volume 13 (1965), p. 1212
[5] In situ observations of stress-induced defect formation at the solid–liquid interface, Journal of Crystal Growth, Volume 173 (1997), pp. 503-512
[6] Time-resolved X-ray imaging of dendritic growth in binary alloys, Phys. Rev. Lett., Volume 83 (1999), pp. 5062-5065
[7] Direct observation of stray crystal formation in unidirectional solidification of Sn–Bi alloy by X-ray imaging, Journal of Crystal Growth, Volume 262 (2004), pp. 645-652
[8] Application of synchrotron X-ray imaging to the study of directional solidification of aluminium-based alloys, Journal of Crystal Growth, Volume 275 (2005), pp. 201-208
[9] Evolution of characteristic pattern parameters in directional solidification of thin samples of a dilute Al–Cu alloy, Journal of Crystal Growth, Volume 151 (1995), pp. 192-199
[10] Strain visualization of the onset of morphological instability and defect formation in cellular solidification of a dilute Al–Cu alloy, Acta Materialia, Volume 45 (1997), p. 2329
[11] In-situ and real-time analysis of the formation of strains and microstructure defects during solidification of Al–3.5 wt pct Ni alloys, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 39A (2008), pp. 865-874
[12] On the application of X-ray microtomography in the field of materials science, Advanced Engineering Materials, Volume 3 (2001), pp. 539-546
[13] M.P. Stephenson, J. Beech, In situ radiographic observations of solute redistribution during solidification, in: J. Solidification Cast. Met. Conference Proceedings, Sheffields, UK, 1977, pp. 34–38.
[14] X-ray microscopic observations of metal solidification dynamics, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 25 (1994), pp. 1775-1777
[15] X-ray radioscopic visualization of the solutal convection during solidification of a Ga–30 wt pct in alloy, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science A, Volume 39 (2008), pp. 613-623
[16] X-ray radiography observations of columnar dendritic growth and constitutional undercooling in an Al–30wt%Cu alloy, Acta Materialia, Volume 53 (2005), pp. 947-956
[17] Phase objects in synchrotron radiation hard X-ray imaging, J. Phys. D-Appl. Phys., Volume 29 (1996), pp. 133-146
[18] On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation, Review of Scientific Instruments, Volume 66 (1995), pp. 5486-5492
[19] High Resolution X-Ray Diffraction and Topography, 1998
[20] Real-time and in situ solidification of Al-based alloys investigated by synchrotron radiation: A unique experimental set-up combining radiography and topography techniques, Phys. Stat. Sol., Volume 204 (2008), pp. 2721-2728
[21] Nature and Properties of Semi-Solid Materials (J.A. Sekhar; J. Dantzig, eds.), TMS, Warrendale, PA, 1991, p. 3
[22] 3D study of the structure of primary crystals in a rheocast Al–Cu alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Volume 283 (2000), pp. 70-75
[23] Three-dimensional characterisation of dendritic microstructures, Acta Materialia, Volume 49 (2001), pp. 897-902
[24] 3D characterisation of intermetallics in a high pressure die cast Mg alloy using focused ion beam tomography, Mater. Charact., Volume 61 (2010), pp. 1035-1042
[25] High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys, Mater. Charact., Volume 62 (2011), pp. 99-107
[26] 3D imaging in material science: Application of X-ray tomography, C. R. Phys., Volume 11 (2010), pp. 641-649
[27] Evolution of pore morphology and distribution during the homogenization of direct chill cast Al–Mg alloys, Acta Materialia, Volume 55 (2007), pp. 285-293
[28] G. Nicoletto, G. Anzelottia, R. Kone, X-ray computed tomography vs. metallography for pore sizing and fatigue of cast Al-alloys, Procedia Engineering (2010) 547.
[29] An X-ray microtomographic and finite element modeling approach for the prediction of semi-solid deformation behaviour in Al–Cu alloys, Acta Materialia, Volume 57 (2009), pp. 5554-5562
[30] Permeability assessment by 3D interdendritic flow simulations on microtomography mappings of Al–Cu alloys, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., Volume 392 (2005), pp. 112-120
[31] Microstructural changes during quenching, Journal of Crystal Growth, Volume 192 (1998), pp. 300-306
[32] In-situ three-dimensional microstructural investigation of solidification of an Al–Cu alloy by ultrafast X-ray microtomography, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 36A (2005), pp. 1515-1523
[33] In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al–10 wt% Cu alloy, Acta Materialia, Volume 57 (2009), pp. 2300-2310
[34] In situ study of nucleation and growth of the irregular alpha-Al/beta-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography, Acta Materialia, Volume 58 (2010), pp. 5370-5380
[35] Pattern formation in constrained dendritic growth with solutal buoyancy, Acta Materialia, Volume 57 (2009), pp. 2640-2645
[36] Crystal fragmentation and columnar-to-equiaxed transitions in AlCu studied by synchrotron X-ray video microscopy, Metall. Mater. Trans. A, Volume 37A (2006), pp. 2515-2524
[37] Fragmentation due to the interaction of solute flow with the dendritic network during the solidification of aluminum alloys (H. Jones, ed.), 5th Decennial Conference on Solidification Processing, University of Sheffield, Sheffield, UK, 2007, pp. 321-325
[38] The real-time, high-resolution X-ray, video microscopy of solidification in aluminum alloys, JOM, Volume 59 (2007), pp. 20-26
[39] Directional solidification of Al–1.5 wt% Ni alloys under diffusion transport in space and fluid flow localisation on Earth, Journal of Crystal Growth, Volume 281 (2005), pp. 654-668
[40] Cumulative moments and microstructure deformation induced by growth shape in columnar solidification, Phys. Rev. Lett., Volume 93 (2004), p. 126105
[41] Mechanical deformation of dendrites by fluid flow, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 27 (1996), pp. 229-232
[42] Dendritic single-crystals-microstructure and deformation behavior, Helv. Phys. Acta, Volume 58 (1985), pp. 469-483
[43] Dendritic growth and crystalline quality of nickel-base single grains, Journal of Crystal Growth, Volume 130 (1993), pp. 132-146
[44] Microstructural stress concentration: An important role in grain refinement of rheocasting structure, Metallurgical and Materials Transactions A, Volume 36 (2005), pp. 2785-2792
- “In-situ” x-ray imaging technology for material and manufacturing science: A review, Journal of Manufacturing Processes, Volume 141 (2025), p. 1245 | DOI:10.1016/j.jmapro.2025.03.049
- Effect of Solidification Direction on the Freckle Formation in Single-Crystal Superalloy Castings, Materials, Volume 18 (2025) no. 7, p. 1534 | DOI:10.3390/ma18071534
- Solidification paths of Al-Cu-Sn alloys: Comparison of thermodynamic analyses and solidification experiments using in situ X-radiography, Materials Today Communications, Volume 40 (2024), p. 109545 | DOI:10.1016/j.mtcomm.2024.109545
- Morphological stability of solid-liquid interfaces under additive manufacturing conditions, Acta Materialia, Volume 250 (2023), p. 118858 | DOI:10.1016/j.actamat.2023.118858
- X‐ray Tomography and Tomoscopy on Metals: A Review, Advanced Engineering Materials, Volume 25 (2023) no. 8 | DOI:10.1002/adem.202201355
- In-situ synchrotron X-ray radiography study of primary Fe-rich phases growth in Al-Fe( Cu) alloys, Materials Characterization, Volume 195 (2023), p. 112539 | DOI:10.1016/j.matchar.2022.112539
- In-situ X-ray monitoring of solidification and related processes of metal alloys, npj Microgravity, Volume 9 (2023) no. 1 | DOI:10.1038/s41526-023-00321-z
- Pseudo-4D view of the growth and form of locked eutectic colonies, Acta Materialia, Volume 240 (2022), p. 118335 | DOI:10.1016/j.actamat.2022.118335
- Influence of growth velocity on fragmentation during directional solidification of Al – 14 wt. | DOI:10.1016/j.actamat.2022.118370
- Numerical simulation on dendritic growth of Al–Cu alloy under convection based on the cellular automaton lattice Boltzmann method, Chinese Physics B, Volume 31 (2022) no. 9, p. 098105 | DOI:10.1088/1674-1056/ac7211
- Facet formation during the solidification of pure antimony, Journal of Crystal Growth, Volume 586 (2022), p. 126633 | DOI:10.1016/j.jcrysgro.2022.126633
- Equiaxed grain structure formation during directional solidification of a refined Al-20wt. | DOI:10.1016/j.jcrysgro.2022.126645
- Image contrast enhancement algorithm for X-ray observation of space materials in situ, Journal of Instrumentation, Volume 17 (2022) no. 06, p. P06010 | DOI:10.1088/1748-0221/17/06/p06010
- Effect of solutes on grain refinement, Progress in Materials Science, Volume 123 (2022), p. 100809 | DOI:10.1016/j.pmatsci.2021.100809
- In situ investigation of the Columnar-to-Equiaxed Transition during directional solidification of Al–20 wt. | DOI:10.1016/j.actamat.2021.117401
- Tomoscopy: Time‐Resolved Tomography for Dynamic Processes in Materials, Advanced Materials, Volume 33 (2021) no. 45 | DOI:10.1002/adma.202104659
- Flexible Unsupervised Binary Change Detection Algorithm Identifies Phase Transitions in Continuous Image Streams, Integrating Materials and Manufacturing Innovation, Volume 10 (2021) no. 1, p. 72 | DOI:10.1007/s40192-021-00199-3
- Progress in modelling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018, International Materials Reviews, Volume 66 (2021) no. 1, p. 30 | DOI:10.1080/09506608.2020.1757894
- Progress on In Situ and Operando X-ray Imaging of Solidification Processes, Materials, Volume 14 (2021) no. 9, p. 2374 | DOI:10.3390/ma14092374
- Analysis of gravity effects during binary alloy directional solidification by comparison of microgravity and Earth experiments with in situ observation, The European Physical Journal E, Volume 44 (2021) no. 7 | DOI:10.1140/epje/s10189-021-00102-0
- Impact of solute flow during directional solidification of a Ni-based alloy: In-situ and real-time X-radiography, Acta Materialia, Volume 194 (2020), p. 68 | DOI:10.1016/j.actamat.2020.04.003
- Combined growth of α-Al and Bi in a Al-Bi-Cu monotectic alloy analyzed by in situ X-ray radiography, Journal of Crystal Growth, Volume 536 (2020), p. 125592 | DOI:10.1016/j.jcrysgro.2020.125592
- Imaging transient solidification behavior, MRS Bulletin, Volume 45 (2020) no. 11, p. 916 | DOI:10.1557/mrs.2020.273
- XRISE-M: X-radiography facility for solidification and diffusion studies of alloys aboard sounding rockets, Review of Scientific Instruments, Volume 91 (2020) no. 1 | DOI:10.1063/1.5124548
- A review on the porous medium approaches to model the flow of interdendritic liquid during the solidification of alloys in casting processes: theory and experiments, The International Journal of Advanced Manufacturing Technology, Volume 107 (2020) no. 9-10, p. 4097 | DOI:10.1007/s00170-020-05241-w
- In Situ Characterization of Hot Cracking Using Dynamic X-Ray Radiography, Advanced Real Time Imaging II (2019), p. 77 | DOI:10.1007/978-3-030-06143-2_8
- Investigation of Thermo-Electro-Magnetic force on equiaxed grain motion during upward directional solidification, International Journal of Thermal Sciences, Volume 145 (2019), p. 106047 | DOI:10.1016/j.ijthermalsci.2019.106047
- In situ observation and phase-field simulation on the influence of pressure rate on dendritic growth kinetics in the solidification of succinonitrile, Journal of Materials Science, Volume 54 (2019) no. 4, p. 3111 | DOI:10.1007/s10853-018-3074-x
- Non-steady 3D dendrite tip growth under diffusive and weakly convective conditions, Materialia, Volume 5 (2019), p. 100215 | DOI:10.1016/j.mtla.2019.100215
- Study on the response of dendritic growth to periodic increase–decrease pressure in solidification via in situ observation using succinonitrile, Journal of Crystal Growth, Volume 498 (2018), p. 85 | DOI:10.1016/j.jcrysgro.2018.06.007
- Crystal nucleation in metallic alloys using x-ray radiography and machine learning, Science Advances, Volume 4 (2018) no. 4 | DOI:10.1126/sciadv.aar4004
- In Situ Studies of the Solidification Dynamics of Metal Alloys, Solidification Processing of Metallic Alloys Under External Fields, Volume 273 (2018), p. 19 | DOI:10.1007/978-3-319-94842-3_2
- 4D Nano-Tomography for Fundamental Studies in Solidification of Aluminium-Based Alloys, Transactions of the Indian Institute of Metals, Volume 71 (2018) no. 11, p. 2765 | DOI:10.1007/s12666-018-1409-6
- Microstructure selection in thin-sample directional solidification of an Al-Cu alloy: In situ X-ray imaging and phase-field simulations, Acta Materialia, Volume 129 (2017), p. 203 | DOI:10.1016/j.actamat.2017.02.047
- From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample, Metallurgical and Materials Transactions A, Volume 48 (2017) no. 11, p. 5529 | DOI:10.1007/s11661-017-4302-8
- In situ imaging of microstructure formation in electronic interconnections, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/srep40010
- In situ observation of solidification patterns in diffusive conditions, Acta Materialia, Volume 108 (2016), p. 325 | DOI:10.1016/j.actamat.2016.01.024
- Influence of gravity level on Columnar-to-Equiaxed Transition during directional solidification of Al – 20 wt. | DOI:10.1016/j.actamat.2016.03.007
- On the interest of microgravity experimentation for studying convective effects during the directional solidification of metal alloys, Comptes Rendus. Mécanique, Volume 345 (2016) no. 1, p. 66 | DOI:10.1016/j.crme.2016.10.007
- Eutectic and peritectic solidification patterns, Current Opinion in Solid State and Materials Science, Volume 20 (2016) no. 1, p. 46 | DOI:10.1016/j.cossms.2015.10.002
- Dendrite growth morphologies in rapidly solidified Al-4.5wt. | DOI:10.1088/1757-899x/117/1/012055
- Validation and Simulation of Cellular Automaton Model for Dendritic Growth during the Solidification of Fe–C Binary Alloy with Fluid Flow, ISIJ International, Volume 56 (2016) no. 4, p. 564 | DOI:10.2355/isijinternational.isijint-2015-573
- Direct observation of spatially isothermal equiaxed solidification of an Al–Cu alloy in microgravity on board the MASER 13 sounding rocket, Journal of Crystal Growth, Volume 454 (2016), p. 96 | DOI:10.1016/j.jcrysgro.2016.08.054
- In Situ Observation of Crystal Rain and Its Effect on Columnar to Equiaxed Transition, Metals, Volume 6 (2016) no. 11, p. 271 | DOI:10.3390/met6110271
- In Situ Investigation of the Effects of Gravity Level Variations on the Directional Solidification Microstructures During Parabolic Flights, TMS 2016 145th Annual Meeting Exhibition (2016), p. 43 | DOI:10.1007/978-3-319-48254-5_6
- In Situ Investigation of The Effects of Gravity Level Variations on The Directional Solidification Microstructures During Parabolic Flights, TMS 2016: 145thAnnual Meeting Exhibition: Supplemental Proceedings (2016), p. 43 | DOI:10.1002/9781119274896.ch6
- Characterization of dendrite morphologies in rapidly solidified Al–4.5 wt. | DOI:10.1016/j.actamat.2015.02.007
- Equiaxed dendritic solidification and grain refiner potency characterised through in situ X-radiography, Acta Materialia, Volume 95 (2015), p. 83 | DOI:10.1016/j.actamat.2015.04.060
- X‐ray Imaging and Controlled Solidification of Al‐Cu Alloys Toward Microstructures by Design, Advanced Engineering Materials, Volume 17 (2015) no. 4, p. 454 | DOI:10.1002/adem.201400469
- In Situ Study on the Evolution of Dendrite Morphology Affected by Electric Field in Sn‐Bi Alloy, Advances in the Science and Engineering of Casting Solidification (2015), p. 207 | DOI:10.1002/9781119093367.ch25
- In Situ Study on the Evolution of Dendrite Morphology Affected by Electric Field in Sn-Bi Alloy, Advances in the Science and Engineering of Casting Solidification (2015), p. 209 | DOI:10.1007/978-3-319-48117-3_25
- In Situ Soldering Process Technique by Synchrotron X-Ray Imaging, Applied Mechanics and Materials, Volume 754-755 (2015), p. 508 | DOI:10.4028/www.scientific.net/amm.754-755.508
- CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time‐lapse X‐ray microtomography, Geophysical Research Letters, Volume 42 (2015) no. 10, p. 3911 | DOI:10.1002/2015gl063541
- Evolution of the dendritic morphology with the solidification velocity in rapidly solidified Al-4.5wt. | DOI:10.1088/1757-899x/84/1/012016
- Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments, IOP Conference Series: Materials Science and Engineering, Volume 84 (2015), p. 012082 | DOI:10.1088/1757-899x/84/1/012082
- Large-Scale Three-Dimensional Simulation of Dendritic Solidification Using Lattice Boltzmann Method, JOM, Volume 67 (2015) no. 8, p. 1786 | DOI:10.1007/s11837-015-1446-0
- Motion of equiaxed grains during directional solidification under static magnetic field, Journal of Crystal Growth, Volume 417 (2015), p. 25 | DOI:10.1016/j.jcrysgro.2014.10.058
- Hard X-Ray Synchrotron Imaging Techniques and Applications, Synchrotron Radiation (2015), p. 389 | DOI:10.1007/978-3-642-55315-8_13
- A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al–15Cu alloy, Acta Materialia, Volume 70 (2014), p. 228 | DOI:10.1016/j.actamat.2014.02.024
- Thermoelectric magnetic flows in melt during directional solidification, Applied Physics Letters, Volume 104 (2014) no. 12 | DOI:10.1063/1.4870099
- Phase-field Modeling and Simulations of Dendrite Growth, ISIJ International, Volume 54 (2014) no. 2, p. 437 | DOI:10.2355/isijinternational.54.437
- In Situ Investigation of Dendrite Deformation During Upward Solidification of Al-7wt. | DOI:10.1007/s11837-014-1030-z
- Study on diffusion behavior and microstructural evolution of Al/Cu bimetal interface by synchrotron X-ray radiography, Journal of Alloys and Compounds, Volume 616 (2014), p. 550 | DOI:10.1016/j.jallcom.2014.07.172
- Closed-loop control of product properties in metal forming: A review and prospectus, Journal of Materials Processing Technology, Volume 214 (2014) no. 11, p. 2333 | DOI:10.1016/j.jmatprotec.2014.04.014
- Characterization of Motion of Dendrite Fragment by X-Ray Radiography on Earth and under Microgravity Environment, Materials Science Forum, Volume 790-791 (2014), p. 311 | DOI:10.4028/www.scientific.net/msf.790-791.311
- In Situ Investigation of Grain Migration by TGZM during Solidification in a Temperature Gradient, Materials Science Forum, Volume 790-791 (2014), p. 323 | DOI:10.4028/www.scientific.net/msf.790-791.323
- In Situ and Real-Time Analysis of TEM Forces Induced by a Permanent Magnetic Field during Solidification of Al-4wt | DOI:10.4028/www.scientific.net/msf.790-791.420
- Influence of natural convection during upward directional solidification: A comparison between in situ X-ray radiography and direct simulation of the grain structure, Acta Materialia, Volume 61 (2013) no. 13, p. 4765 | DOI:10.1016/j.actamat.2013.04.067
- In-situ observation of eutectic growth in Al-based alloys by light microscopy, Journal of Crystal Growth, Volume 372 (2013), p. 57 | DOI:10.1016/j.jcrysgro.2013.02.033
- XRMON-GF: A novel facility for solidification of metallic alloys with in situ and time-resolved X-ray radiographic characterization in microgravity conditions, Journal of Crystal Growth, Volume 374 (2013), p. 23 | DOI:10.1016/j.jcrysgro.2013.03.032
Cité par 70 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier