[Imagerie au rayonnement synchrotron pour les études de croissance cristalline]
Les caractéristiques des installations modernes de rayonnement synchrotron (faisceaux de rayons X intenses et cohérents) ont amené à une augmentation notable des possibilités des techniques dʼimagerie, tant en ce qui concerne la résolution spatiale et temporelle que le contraste de phase et les images tridimensionelles. Ceci permet dʼobtenir des informations sur la croissance cristalline qui ne peuvent être obtenues autrement. Après une brève description de techniques dʼimagerie aux rayons X au synchrotron, nous donnons des exemples originaux qui illustrent les possibilités nouvelles pour les études de croissance cristalline : caractérisation de cristaux produits pour des applications, tels les tri-cristaux de glace que lʼon fait pousser pour des études de déformation mécanique, SiC, silicium monocristallin pour des cellules solaires photovoltaïques, des études in situ et en temps réel de la croissance de quasicristaux (AlPdMn), et la tomographie ultrarapide pour lʼétude de la croissance de dendrites dans des alliages métalliques.
The features associated with modern synchrotron radiation machines (intense and coherent beams) result in a substantial extension of X-ray imaging capabilities in terms of spatial and temporal resolution, phase contrast and 3D images. This allows crystal growth-related information to be obtained which is not available otherwise. After briefly describing the main synchrotron radiation based imaging techniques of interest, we give original examples illustrating the new capabilities for crystal growth: characterisation of crystals grown for applications, such as ice tri-crystals produced for mechanical deformation studies; SiC; crystalline silicon for solar photovoltaic cells; in situ and in real time studies of quasicrystal growth (AlPdMn); and ultrafast tomography for the study of the growth of dendrites in metallic alloys.
Mots-clés : Croissance cristalline, Rayonnement synchrotron, Image tridimensionelle
José Baruchel 1 ; Marco Di Michiel 1 ; Tamzin Lafford 1 ; Pierre Lhuissier 2 ; Jacques Meyssonnier 3 ; Henri Nguyen-Thi 4, 5 ; Armelle Philip 3 ; Petra Pernot 1 ; Luc Salvo 2 ; Mario Scheel 1
@article{CRPHYS_2013__14_2-3_208_0, author = {Jos\'e Baruchel and Marco Di Michiel and Tamzin Lafford and Pierre Lhuissier and Jacques Meyssonnier and Henri Nguyen-Thi and Armelle Philip and Petra Pernot and Luc Salvo and Mario Scheel}, title = {Synchrotron {X-ray} imaging for crystal growth studies}, journal = {Comptes Rendus. Physique}, pages = {208--220}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.10.010}, language = {en}, }
TY - JOUR AU - José Baruchel AU - Marco Di Michiel AU - Tamzin Lafford AU - Pierre Lhuissier AU - Jacques Meyssonnier AU - Henri Nguyen-Thi AU - Armelle Philip AU - Petra Pernot AU - Luc Salvo AU - Mario Scheel TI - Synchrotron X-ray imaging for crystal growth studies JO - Comptes Rendus. Physique PY - 2013 SP - 208 EP - 220 VL - 14 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2012.10.010 LA - en ID - CRPHYS_2013__14_2-3_208_0 ER -
%0 Journal Article %A José Baruchel %A Marco Di Michiel %A Tamzin Lafford %A Pierre Lhuissier %A Jacques Meyssonnier %A Henri Nguyen-Thi %A Armelle Philip %A Petra Pernot %A Luc Salvo %A Mario Scheel %T Synchrotron X-ray imaging for crystal growth studies %J Comptes Rendus. Physique %D 2013 %P 208-220 %V 14 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2012.10.010 %G en %F CRPHYS_2013__14_2-3_208_0
José Baruchel; Marco Di Michiel; Tamzin Lafford; Pierre Lhuissier; Jacques Meyssonnier; Henri Nguyen-Thi; Armelle Philip; Petra Pernot; Luc Salvo; Mario Scheel. Synchrotron X-ray imaging for crystal growth studies. Comptes Rendus. Physique, Crystal growth / Croissance cristalline, Volume 14 (2013) no. 2-3, pp. 208-220. doi : 10.1016/j.crhy.2012.10.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.010/
[1] Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988
[2] Trait. Signal, 13 (1996), p. 381
[3] Rev. Sci. Instrum., 66 (1995), p. 5486
[4] J. Phys. D: Appl. Phys., 29 (1996), p. 133
[5] J. Appl. Phys., 81 (1997), p. 5878
[6] Appl. Phys. Lett., 75 (1999), p. 2912
[7] Coherent X-Ray Optics, Oxford Univ. Press, 2006
[8] Rev. Sci. Instrum., 70 (1999), p. 1907
[9] et al. J. Appl. Phys., 94 (2003), p. 145
[10] et al. Phys. Rev. Lett., 109 (2012) no. 2, p. 025502 | DOI
[11] et al. Science, 321 (2008), p. 382
[12] Encyclopaedia of Condensed Matter Physics, Elsevier, 2005 (pp. 342–348)
[13] et al. J. Appl. Crystallogr., 38 (2005), p. 91
[14] Dynamical Theory of X-Ray Diffraction, Oxford Univ. Press, 2001
[15] X-Ray and Neutron Dynamical Diffraction, Theory and Applications (A. Authier; S. Lagomarsino; B.K. Tanner, eds.), Plenum, New York, 1996
[16] Characterization of Crystal Growth Defects by X-Ray Methods (B.K. Tanner; D.K. Bowen, eds.), Plenum, New York, 1980
[17] Physics of Ice, Oxford Univ. Press, 1999
[18] Lattice Defects in Ice Crystals, Hokkaido Univ. Press, Sapporo, Japan, 1988
[19] Philos. Mag., 6 (1961) no. 11
[20] Mater. Sci. Forum, 338–342 (2000), p. 13
[21] et al. Appl. Phys. Lett., 89 (2006), p. 042102
[22] J. Synchrotron Rad., 19 (2012), p. 521
[23] et al. Phys. Rev. Lett., 53 (1984), p. 1951
[24] et al. Philos. Mag. Lett., 71 (1995), p. 11
[25] et al. Phys. Rev. E, 74 (2006), p. 031605
[26] et al. Phys. Stat. Sol. (a), 204 (2007), p. 2503
[27] J. Cryst. Growth, 237–239 (2002), p. 735
[28] et al. J. Mater. Res., 6 (1991), p. 2637
[29] et al. Philos. Mag., 83 (2003), p. 1
[30] et al. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 39 (2008), p. 865
[31] et al. Philos. Mag., 86 (2006), p. 335
[32] Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 36 (2005), p. 1515
[33] et al. Acta Mater., 57 (2009), p. 2300
[34] et al. Acta Mater., 58 (2010), p. 5370
[35] JOM J. Miner. Met. Mater. Soc., 64 (2012), p. 83
[36] Acta Mater., 60 (2012), p. 2568
[37] J. Synchrotron Rad., 19 (2012), p. 352
[38] et al. Mater. Sci. Forum, 706–709 (2012), p. 1713
[39] http://3dviewer.neurofly.de/
[40] http://rsbweb.nih.gov/ij/plugins/3d-convex-hull/index.html
[41] et al. Trans. Indian Inst. Met., 62 (2009), p. 427
[42] JOM J. Miner. Met. Mater. Soc., 64 (2012), p. 76
[43] Crystal Growth, from Fundamentals to Technology (G. Müller; J.-J. Métois; P. Rudolph, eds.), Elsevier, Amsterdam, 2004, p. 345
- Crystal distortions and structural defects at several scales generated during the growth of silicon contaminated with carbon, Acta Materialia, Volume 252 (2023), p. 118904 | DOI:10.1016/j.actamat.2023.118904
- Large-Area Mapping of Voids and Dislocations in Basal-Faceted Sapphire Ribbons by Synchrotron Radiation Imaging, Materials, Volume 16 (2023) no. 19, p. 6589 | DOI:10.3390/ma16196589
- New approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography data, Physics-Uspekhi, Volume 66 (2023) no. 09, p. 943 | DOI:10.3367/ufne.2022.05.039199
- Section Methods of X-Ray Diffraction Topography, Technical Physics, Volume 68 (2023) no. 12, p. 778 | DOI:10.1134/s1063784223080340
- New approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography data, Uspekhi Fizicheskih Nauk, Volume 193 (2023) no. 09, p. 1001 | DOI:10.3367/ufnr.2022.05.039199
- Morphology and Growth Habit of the New Flux-Grown Layered Semiconductor KBiS2 Revealed by Diffraction Contrast Tomography, Crystal Growth Design, Volume 22 (2022) no. 5, p. 3228 | DOI:10.1021/acs.cgd.2c00078
- CrystalGrowthTracker: A Python package to analyse crystal face advancement rates from time lapse synchrotron radiography, Journal of Open Source Software, Volume 7 (2022) no. 79, p. 4333 | DOI:10.21105/joss.04333
- Synchrotron X-Ray Diffraction Studies on Crystalline Domains in Urea–Formaldehyde Resins at Low Molar Ratio, Journal of the Korean Wood Science and Technology, Volume 50 (2022) no. 5, p. 353 | DOI:10.5658/wood.2022.50.5.353
- Dislocation Contrast Analysis in Weak Beam Synchrotron X-Ray Topography, Materials Science Forum, Volume 1062 (2022), p. 356 | DOI:10.4028/p-u7m9jr
- Impact of gravity on directional solidification of refined Al-20wt. | DOI:10.1016/j.jallcom.2020.158028
- Dislocation contrast on X-ray topographs under weak diffraction conditions, Journal of Applied Crystallography, Volume 54 (2021) no. 4, p. 1225 | DOI:10.1107/s1600576721006592
- Analysis of gravity effects during binary alloy directional solidification by comparison of microgravity and Earth experiments with in situ observation, The European Physical Journal E, Volume 44 (2021) no. 7 | DOI:10.1140/epje/s10189-021-00102-0
- X‐Ray Topography—More than Nice Pictures, Crystal Research and Technology, Volume 55 (2020) no. 9 | DOI:10.1002/crat.202000012
- Identification of Burgers vectors of dislocations in monoclinic β-Ga2O3 via synchrotron x-ray topography, Journal of Applied Physics, Volume 127 (2020) no. 20 | DOI:10.1063/5.0007229
- In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging, Journal of Materials Science Technology, Volume 39 (2020), p. 113 | DOI:10.1016/j.jmst.2019.06.026
- Imaging transient solidification behavior, MRS Bulletin, Volume 45 (2020) no. 11, p. 916 | DOI:10.1557/mrs.2020.273
- Characterization of metals in four dimensions, Materials Research Letters, Volume 8 (2020) no. 12, p. 462 | DOI:10.1080/21663831.2020.1809544
- X-ray Diffraction Tomography Using Laboratory Sources for Studying Single Dislocations in a Low Absorbing Silicon Single Crystal, Optoelectronics, Instrumentation and Data Processing, Volume 55 (2019) no. 2, p. 126 | DOI:10.3103/s8756699019020031
- The anisotropic contact response of viscoplastic monocrystalline ice particles, Acta Materialia, Volume 132 (2017), p. 576 | DOI:10.1016/j.actamat.2017.04.069
- From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample, Metallurgical and Materials Transactions A, Volume 48 (2017) no. 11, p. 5529 | DOI:10.1007/s11661-017-4302-8
- X‐ray Imaging and Controlled Solidification of Al‐Cu Alloys Toward Microstructures by Design, Advanced Engineering Materials, Volume 17 (2015) no. 4, p. 454 | DOI:10.1002/adem.201400469
- Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments, IOP Conference Series: Materials Science and Engineering, Volume 84 (2015), p. 012082 | DOI:10.1088/1757-899x/84/1/012082
- Phase-field Modeling and Simulations of Dendrite Growth, ISIJ International, Volume 54 (2014) no. 2, p. 437 | DOI:10.2355/isijinternational.54.437
- Synchrotron Diffraction topography in Studying of the Defect Structure in Crystals Grown by the Czochralski Method, Acta Physica Polonica A, Volume 124 (2013) no. 2, p. 350 | DOI:10.12693/aphyspola.124.350
- Three-dimensional rocking curve imaging to measure the effective distortion in the neighbourhood of a defect within a crystal: an ice example, Journal of Applied Crystallography, Volume 46 (2013) no. 4, p. 842 | DOI:10.1107/s002188981300472x
Cité par 25 documents. Sources : Crossref
Commentaires - Politique