Comptes Rendus
Synchrotron X-ray imaging for crystal growth studies
[Imagerie au rayonnement synchrotron pour les études de croissance cristalline]
Comptes Rendus. Physique, Crystal growth / Croissance cristalline, Volume 14 (2013) no. 2-3, pp. 208-220.

Les caractéristiques des installations modernes de rayonnement synchrotron (faisceaux de rayons X intenses et cohérents) ont amené à une augmentation notable des possibilités des techniques dʼimagerie, tant en ce qui concerne la résolution spatiale et temporelle que le contraste de phase et les images tridimensionelles. Ceci permet dʼobtenir des informations sur la croissance cristalline qui ne peuvent être obtenues autrement. Après une brève description de techniques dʼimagerie aux rayons X au synchrotron, nous donnons des exemples originaux qui illustrent les possibilités nouvelles pour les études de croissance cristalline : caractérisation de cristaux produits pour des applications, tels les tri-cristaux de glace que lʼon fait pousser pour des études de déformation mécanique, SiC, silicium monocristallin pour des cellules solaires photovoltaïques, des études in situ et en temps réel de la croissance de quasicristaux (AlPdMn), et la tomographie ultrarapide pour lʼétude de la croissance de dendrites dans des alliages métalliques.

The features associated with modern synchrotron radiation machines (intense and coherent beams) result in a substantial extension of X-ray imaging capabilities in terms of spatial and temporal resolution, phase contrast and 3D images. This allows crystal growth-related information to be obtained which is not available otherwise. After briefly describing the main synchrotron radiation based imaging techniques of interest, we give original examples illustrating the new capabilities for crystal growth: characterisation of crystals grown for applications, such as ice tri-crystals produced for mechanical deformation studies; SiC; crystalline silicon for solar photovoltaic cells; in situ and in real time studies of quasicrystal growth (AlPdMn); and ultrafast tomography for the study of the growth of dendrites in metallic alloys.

Publié le :
DOI : 10.1016/j.crhy.2012.10.010
Keywords: Crystal growth, Synchrotron radiation, 3D images
Mots-clés : Croissance cristalline, Rayonnement synchrotron, Image tridimensionelle

José Baruchel 1 ; Marco Di Michiel 1 ; Tamzin Lafford 1 ; Pierre Lhuissier 2 ; Jacques Meyssonnier 3 ; Henri Nguyen-Thi 4, 5 ; Armelle Philip 3 ; Petra Pernot 1 ; Luc Salvo 2 ; Mario Scheel 1

1 ESRF, 6, rue Jules-Horowitz, BP 220, 38043 Grenoble, France
2 Grenoble University & CNRS, SIMaP/GPM2, UMR CNRS 5266, UJF, BP 46, 38402 Saint-Martin-dʼHères, France
3 LGGE, UJF & CNRS, UMR 5183, 54, rue Molière, 38402 Saint-Martin-dʼHères, France
4 Aix Marseille University, 13397 Marseille cedex 20, France
5 CNRS, IM2NP, UMR CNRS 7334, campus Saint-Jérôme, case 142, 13397 Marseille cedex 20, France
@article{CRPHYS_2013__14_2-3_208_0,
     author = {Jos\'e Baruchel and Marco Di Michiel and Tamzin Lafford and Pierre Lhuissier and Jacques Meyssonnier and Henri Nguyen-Thi and Armelle Philip and Petra Pernot and Luc Salvo and Mario Scheel},
     title = {Synchrotron {X-ray} imaging for crystal growth studies},
     journal = {Comptes Rendus. Physique},
     pages = {208--220},
     publisher = {Elsevier},
     volume = {14},
     number = {2-3},
     year = {2013},
     doi = {10.1016/j.crhy.2012.10.010},
     language = {en},
}
TY  - JOUR
AU  - José Baruchel
AU  - Marco Di Michiel
AU  - Tamzin Lafford
AU  - Pierre Lhuissier
AU  - Jacques Meyssonnier
AU  - Henri Nguyen-Thi
AU  - Armelle Philip
AU  - Petra Pernot
AU  - Luc Salvo
AU  - Mario Scheel
TI  - Synchrotron X-ray imaging for crystal growth studies
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 208
EP  - 220
VL  - 14
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.10.010
LA  - en
ID  - CRPHYS_2013__14_2-3_208_0
ER  - 
%0 Journal Article
%A José Baruchel
%A Marco Di Michiel
%A Tamzin Lafford
%A Pierre Lhuissier
%A Jacques Meyssonnier
%A Henri Nguyen-Thi
%A Armelle Philip
%A Petra Pernot
%A Luc Salvo
%A Mario Scheel
%T Synchrotron X-ray imaging for crystal growth studies
%J Comptes Rendus. Physique
%D 2013
%P 208-220
%V 14
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2012.10.010
%G en
%F CRPHYS_2013__14_2-3_208_0
José Baruchel; Marco Di Michiel; Tamzin Lafford; Pierre Lhuissier; Jacques Meyssonnier; Henri Nguyen-Thi; Armelle Philip; Petra Pernot; Luc Salvo; Mario Scheel. Synchrotron X-ray imaging for crystal growth studies. Comptes Rendus. Physique, Crystal growth / Croissance cristalline, Volume 14 (2013) no. 2-3, pp. 208-220. doi : 10.1016/j.crhy.2012.10.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.010/

[1] A.C. Kak; M. Slaney Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988

[2] F. Peyrin; L. Garnero; I. Magnin Trait. Signal, 13 (1996), p. 381

[3] A. Snigirev; I. Snigireva; V. Kohn; S. Kuznetsov; I. Schelokov Rev. Sci. Instrum., 66 (1995), p. 5486

[4] P. Cloetens; R. Barrett; J. Baruchel; J.P. Guigay; M. Schlenker J. Phys. D: Appl. Phys., 29 (1996), p. 133

[5] P. Cloetens; M. Salomé; J.Y. Buffière; G. Peix; J. Baruchel; F. Peyrin; M. Schlenker J. Appl. Phys., 81 (1997), p. 5878

[6] P. Cloetens; W. Ludwig; J. Baruchel; D. Van Dyck; J. Van Landuyt; J.P. Guigay; M. Schlenker Appl. Phys. Lett., 75 (1999), p. 2912

[7] D.M. Paganin Coherent X-Ray Optics, Oxford Univ. Press, 2006

[8] P. Dhez; P. Chevallier; T.B. Lucatorto; C. Tarrio Rev. Sci. Instrum., 70 (1999), p. 1907

[9] B. Golosio et al. J. Appl. Phys., 94 (2003), p. 145

[10] M. Álvarez-Murga et al. Phys. Rev. Lett., 109 (2012) no. 2, p. 025502 | DOI

[11] A. King et al. Science, 321 (2008), p. 382

[12] J. Baruchel; J. Härtwig Encyclopaedia of Condensed Matter Physics, Elsevier, 2005 (pp. 342–348)

[13] D. Lübbert et al. J. Appl. Crystallogr., 38 (2005), p. 91

[14] A. Authier Dynamical Theory of X-Ray Diffraction, Oxford Univ. Press, 2001

[15] X-Ray and Neutron Dynamical Diffraction, Theory and Applications (A. Authier; S. Lagomarsino; B.K. Tanner, eds.), Plenum, New York, 1996

[16] Characterization of Crystal Growth Defects by X-Ray Methods (B.K. Tanner; D.K. Bowen, eds.), Plenum, New York, 1980

[17] V.F. Petrenko; R.W. Whitworth Physics of Ice, Oxford Univ. Press, 1999

[18] A. Higashi Lattice Defects in Ice Crystals, Hokkaido Univ. Press, Sapporo, Japan, 1988

[19] R.K. Ham Philos. Mag., 6 (1961) no. 11

[20] M. Anikin; O. Chaix; E. Pernot; B. Pelisier; M. Pons; A. Pish; C. Berard; P. Grosse; C. Faure; Y. Grange; G. Basset; C. Moulin; R. Madar Mater. Sci. Forum, 338–342 (2000), p. 13

[21] T. Buonassisi et al. Appl. Phys. Lett., 89 (2006), p. 042102

[22] J. Villanova; J. Segura-Ruiz; T. Lafford; G. Martinez-Criado J. Synchrotron Rad., 19 (2012), p. 521

[23] D. Shechtman et al. Phys. Rev. Lett., 53 (1984), p. 1951

[24] M. Boudard et al. Philos. Mag. Lett., 71 (1995), p. 11

[25] H. Nguyen Thi et al. Phys. Rev. E, 74 (2006), p. 031605

[26] A. Buffet et al. Phys. Stat. Sol. (a), 204 (2007), p. 2503

[27] V.D. Golyshev; M.A. Gonik; V.B. Tsvetovsky J. Cryst. Growth, 237–239 (2002), p. 735

[28] C. Dong et al. J. Mater. Res., 6 (1991), p. 2637

[29] J. Gastaldi et al. Philos. Mag., 83 (2003), p. 1

[30] G. Reinhart et al. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 39 (2008), p. 865

[31] J. Gastaldi et al. Philos. Mag., 86 (2006), p. 335

[32] O. Ludwig; M. Di Michiel; L. Salvo; M.M. Suéry; P. Falus Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 36 (2005), p. 1515

[33] N. Limodin et al. Acta Mater., 57 (2009), p. 2300

[34] S. Terzi et al. Acta Mater., 58 (2010), p. 5370

[35] M. Suéry; S. Terzi; B. Mireux; L. Salvo; J. Adrien; E. Maire JOM J. Miner. Met. Mater. Soc., 64 (2012), p. 83

[36] D. Tolnai; P. Townsend; G. Requena; L. Salvo; J. Lendvai; H. Degischer Acta Mater., 60 (2012), p. 2568

[37] J.L. Fife; M. Rappaz; M. Pistone; T. Celcer; G. Mikuljan; M. Stampanoni J. Synchrotron Rad., 19 (2012), p. 352

[38] L. Salvo et al. Mater. Sci. Forum, 706–709 (2012), p. 1713

[39] http://3dviewer.neurofly.de/

[40] http://rsbweb.nih.gov/ij/plugins/3d-convex-hull/index.html

[41] A. Bogno et al. Trans. Indian Inst. Met., 62 (2009), p. 427

[42] R. Mathiesen; L. Arnberg; H. Nguyen-Thi; B. Billia JOM J. Miner. Met. Mater. Soc., 64 (2012), p. 76

[43] J. Baruchel Crystal Growth, from Fundamentals to Technology (G. Müller; J.-J. Métois; P. Rudolph, eds.), Elsevier, Amsterdam, 2004, p. 345

  • H. Ouaddah; G. Regula; G. Reinhart; I. Périchaud; F. Guittonneau; L. Barrallier; J. Baruchel; T.N. Tran Caliste; N. Mangelinck-Noël Crystal distortions and structural defects at several scales generated during the growth of silicon contaminated with carbon, Acta Materialia, Volume 252 (2023), p. 118904 | DOI:10.1016/j.actamat.2023.118904
  • Tatiana S. Argunova; Victor G. Kohn; Jae-Hong Lim; Vladimir M. Krymov; Mikhail Yu. Gutkin Large-Area Mapping of Voids and Dislocations in Basal-Faceted Sapphire Ribbons by Synchrotron Radiation Imaging, Materials, Volume 16 (2023) no. 19, p. 6589 | DOI:10.3390/ma16196589
  • Denis A. Zolotov; Viktor E. Asadchikov; Aleksei V. Buzmakov; Vladimir V. Volkov; Irina G. D'yachkova; Petr V. Konarev; Vasiliy A. Grigorev; Ernest V. Suvorov New approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography data, Physics-Uspekhi, Volume 66 (2023) no. 09, p. 943 | DOI:10.3367/ufne.2022.05.039199
  • I. L. Shul’pina; E. V. Suvorov; I. A. Smirnova; T. S. Argunova Section Methods of X-Ray Diffraction Topography, Technical Physics, Volume 68 (2023) no. 12, p. 778 | DOI:10.1134/s1063784223080340
  • Denis A. Zolotov; Viktor E. Asadchikov; Aleksei V. Buzmakov; Vladimir V. Volkov; Irina G. D'yachkova; Petr V. Konarev; Vasiliy A. Grigorev; Ernest V. Suvorov New approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography data, Uspekhi Fizicheskih Nauk, Volume 193 (2023) no. 09, p. 1001 | DOI:10.3367/ufnr.2022.05.039199
  • Kejian Qu; Hrishikesh Bale; Zachary W. Riedel; Junehu Park; Leilei Yin; André Schleife; Daniel P. Shoemaker Morphology and Growth Habit of the New Flux-Grown Layered Semiconductor KBiS2 Revealed by Diffraction Contrast Tomography, Crystal Growth Design, Volume 22 (2022) no. 5, p. 3228 | DOI:10.1021/acs.cgd.2c00078
  • Joanna Leng; Jonathan H. Pickering; Sven L. M. Schroeder; Gunjan Das CrystalGrowthTracker: A Python package to analyse crystal face advancement rates from time lapse synchrotron radiography, Journal of Open Source Software, Volume 7 (2022) no. 79, p. 4333 | DOI:10.21105/joss.04333
  • Eko Setio WIBOWO; Byung-Dae PARK; Valerio CAUSIN; Dongyup HAHN Synchrotron X-Ray Diffraction Studies on Crystalline Domains in Urea–Formaldehyde Resins at Low Molar Ratio, Journal of the Korean Wood Science and Technology, Volume 50 (2022) no. 5, p. 353 | DOI:10.5658/wood.2022.50.5.353
  • Hong Yu Peng; Ze Yu Chen; Yafei Liu; Qian Yu Cheng; Shanshan Hu; Xian Rong Huang; Lahsen Assoufid; Balaji Raghothamachar; Michael Dudley Dislocation Contrast Analysis in Weak Beam Synchrotron X-Ray Topography, Materials Science Forum, Volume 1062 (2022), p. 356 | DOI:10.4028/p-u7m9jr
  • Hadjer Soltani; Fabiola Ngomesse; Guillaume Reinhart; Mohamed Chérif Benoudia; Moussa Zahzouh; Henri Nguyen-Thi Impact of gravity on directional solidification of refined Al-20wt. | DOI:10.1016/j.jallcom.2020.158028
  • Hongyu Peng; Tuerxun Ailihumaer; Yafei Liu; Balaji Raghotharmachar; Xianrong Huang; Lahsen Assoufid; Michael Dudley Dislocation contrast on X-ray topographs under weak diffraction conditions, Journal of Applied Crystallography, Volume 54 (2021) no. 4, p. 1225 | DOI:10.1107/s1600576721006592
  • Nathalie Bergeon; Guillaume Reinhart; Fatima L. Mota; Nathalie Mangelinck-Noël; Henri Nguyen-Thi Analysis of gravity effects during binary alloy directional solidification by comparison of microgravity and Earth experiments with in situ observation, The European Physical Journal E, Volume 44 (2021) no. 7 | DOI:10.1140/epje/s10189-021-00102-0
  • Andreas N. Danilewsky X‐Ray Topography—More than Nice Pictures, Crystal Research and Technology, Volume 55 (2020) no. 9 | DOI:10.1002/crat.202000012
  • Yongzhao Yao; Yoshihiro Sugawara; Yukari Ishikawa Identification of Burgers vectors of dislocations in monoclinic β-Ga2O3 via synchrotron x-ray topography, Journal of Applied Physics, Volume 127 (2020) no. 20 | DOI:10.1063/5.0007229
  • Yuanhao Dong; Sansan Shuai; Tianxiang Zheng; Jiawei Cao; Chaoyue Chen; Jiang Wang; Zhongming Ren In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging, Journal of Materials Science Technology, Volume 39 (2020), p. 113 | DOI:10.1016/j.jmst.2019.06.026
  • Joseph T. McKeown; Amy J. Clarke; Jörg M.K. Wiezorek Imaging transient solidification behavior, MRS Bulletin, Volume 45 (2020) no. 11, p. 916 | DOI:10.1557/mrs.2020.273
  • Ashwin J. Shahani; Xianghui Xiao; Erik M. Lauridsen; Peter W. Voorhees Characterization of metals in four dimensions, Materials Research Letters, Volume 8 (2020) no. 12, p. 462 | DOI:10.1080/21663831.2020.1809544
  • D. A. Zolotov; V. E. Asadchikov; A. V. Buzmakov; I. G. D’yachkova; Yu. S. Krivonosov; F. N. Chukhovskii; E. V. Suvorov X-ray Diffraction Tomography Using Laboratory Sources for Studying Single Dislocations in a Low Absorbing Silicon Single Crystal, Optoelectronics, Instrumentation and Data Processing, Volume 55 (2019) no. 2, p. 126 | DOI:10.3103/s8756699019020031
  • Alexis Burr; Wendy Noël; Pierrick Trecourt; Mathieu Bourcier; Fabien Gillet-Chaulet; Armelle Philip; Christophe L. Martin The anisotropic contact response of viscoplastic monocrystalline ice particles, Acta Materialia, Volume 132 (2017), p. 576 | DOI:10.1016/j.actamat.2017.04.069
  • D. Tourret; J. C. E. Mertens; E. Lieberman; S. D. Imhoff; J. W. Gibbs; K. Henderson; K. Fezzaa; A. L. Deriy; T. Sun; R. A. Lebensohn; B. M. Patterson; A. J. Clarke From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample, Metallurgical and Materials Transactions A, Volume 48 (2017) no. 11, p. 5529 | DOI:10.1007/s11661-017-4302-8
  • Amy J. Clarke; Damien Tourret; Seth D. Imhoff; Paul J. Gibbs; Kamel Fezzaa; Jason C. Cooley; Wah‐Keat Lee; Alex Deriy; Brian M. Patterson; Pallas A. Papin; Kester D. Clarke; Robert D. Field; James L. Smith X‐ray Imaging and Controlled Solidification of Al‐Cu Alloys Toward Microstructures by Design, Advanced Engineering Materials, Volume 17 (2015) no. 4, p. 454 | DOI:10.1002/adem.201400469
  • D Tourret; A Karma; A J Clarke; P J Gibbs; S D Imhoff Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments, IOP Conference Series: Materials Science and Engineering, Volume 84 (2015), p. 012082 | DOI:10.1088/1757-899x/84/1/012082
  • Tomohiro Takaki Phase-field Modeling and Simulations of Dendrite Growth, ISIJ International, Volume 54 (2014) no. 2, p. 437 | DOI:10.2355/isijinternational.54.437
  • W. Wierzchowski; K. Wieteska; A. Malinowska; E. Wierzbicka; M. Lefeld-Sosnowska; M. Świrkowicz; T. Łukasiewicz; A. Pajączkowska; C. Paulmann Synchrotron Diffraction topography in Studying of the Defect Structure in Crystals Grown by the Czochralski Method, Acta Physica Polonica A, Volume 124 (2013) no. 2, p. 350 | DOI:10.12693/aphyspola.124.350
  • Armelle Philip; Jacques Meyssonnier; Rafael T. Kluender; José Baruchel Three-dimensional rocking curve imaging to measure the effective distortion in the neighbourhood of a defect within a crystal: an ice example, Journal of Applied Crystallography, Volume 46 (2013) no. 4, p. 842 | DOI:10.1107/s002188981300472x

Cité par 25 documents. Sources : Crossref

Commentaires - Politique