[Étude des transformations diffusives par diffraction des rayons X à haute énergie]
La diffraction des rayons X de haute énergie est un outil puissant pour suivre les transformations de phases pendant des traitements thermiques ou thermo-mécaniques complexes. La haute énérgie permet dʼétudier des échantillons massifs de plusieurs mm3 et dʼobtenir des données toutes les secondes ou moins. La technique est décrite avec différents dispositifs expérimentaux (fours, détecteurs pour différents temps dʼacquisition) permettant une large gamme de vitesse de chauffage et de refroidissement. Trois exemples sont considérés pour illustrer les résultats obtenus en utilisant la diffraction des rayons X de haute énergie. Le premier correspond à une simple transformation de phases diffusive pendant un traitement thermique isotherme pour la transformation α–β dans un alliage de titane, mettant en lumière le caractère diffusif en considérant les évolutions des paramètres de mailles de la phase parente. Le second illustre les séquences de précipitation observées lors du vieilllisement dʼune phase β métastable dans un alliage de titane qui nʼa pu être obtenu par MET. Le dernier exemple illustre les évolutions de phases durant le vieillisement dʼun acier martensitique montrant la complexité des évolutions des paramètres de mailles et quelques évolutions de lʼétat de contrainte.
High energy X-ray diffraction is a powerful tool, able to follow phase transformations during complex thermal or thermo-mechanical treatments. High energy allows one to study volumic specimens of a few mm3 and get successive data within a few seconds or less. The technique is described with different experimental setups (heating devices, detectors for diverse acquisition times) allowing diverse ranges for heating and cooling rates. Three examples are considered to illustrate the results obtained by using high energy X-ray diffraction. The first one corresponds to a simple diffusive phase transformation during an isothermal thermal path for the α–β transformation in a titanium alloy, highlighting the diffusive character considering the cell parameter evolutions of the parent phase. The second one illustrates the precipitation sequences observed during ageing of a β-metastable phase in a titanium alloy that was not obtained by TEM. The last example illustrates the phase evolutions during ageing of a martensitic steel showing the complexity of cell parameters evolution and some evolutions of the stress state.
Mot clés : Rayons X de haute énergie, Diffraction, Transformations de phase, Alliage de titane, Aciers
G. Geandier 1 ; E. Aeby-Gautier 1 ; A. Settefrati 1 ; M. Dehmas 1 ; B. Appolaire 2
@article{CRPHYS_2012__13_3_257_0, author = {G. Geandier and E. Aeby-Gautier and A. Settefrati and M. Dehmas and B. Appolaire}, title = {Study of diffusive transformations by high energy {X-ray} diffraction}, journal = {Comptes Rendus. Physique}, pages = {257--267}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.12.001}, language = {en}, }
TY - JOUR AU - G. Geandier AU - E. Aeby-Gautier AU - A. Settefrati AU - M. Dehmas AU - B. Appolaire TI - Study of diffusive transformations by high energy X-ray diffraction JO - Comptes Rendus. Physique PY - 2012 SP - 257 EP - 267 VL - 13 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2011.12.001 LA - en ID - CRPHYS_2012__13_3_257_0 ER -
%0 Journal Article %A G. Geandier %A E. Aeby-Gautier %A A. Settefrati %A M. Dehmas %A B. Appolaire %T Study of diffusive transformations by high energy X-ray diffraction %J Comptes Rendus. Physique %D 2012 %P 257-267 %V 13 %N 3 %I Elsevier %R 10.1016/j.crhy.2011.12.001 %G en %F CRPHYS_2012__13_3_257_0
G. Geandier; E. Aeby-Gautier; A. Settefrati; M. Dehmas; B. Appolaire. Study of diffusive transformations by high energy X-ray diffraction. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 257-267. doi : 10.1016/j.crhy.2011.12.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.001/
[1] Grain nucleation and growth during phase transformations, Science, Volume 298 (2002), pp. 1003-1005
[2] Synchrotron X-ray diffraction study of the phase transformations in titanium alloys, Materials Characterization, Volume 48 (2002), pp. 279-295
[3] In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite, Metallurgical and Materials Transactions A, Volume 36 (2005), pp. 3281-3289
[4] Austenitization and precipitate dissolution in high nitrogen steels: an in situ high temperature X-ray synchrotron diffraction analysis using the Rietveld method, Materials Science and Engineering A, Volume 393 (2005), pp. 63-70
[5] Experimental study of phase transformations in 3003 aluminium alloys during heating by in situ high energy X-ray synchrotron radiation, Journal of Alloys and Compounds, Volume 400 (2005), pp. 116-124
[6] In situ observations of lattice expansion and transformation rates of alpha and beta phases in Ti–6Al–4V, Materials Science and Engineering A, Volume 391 (2005), pp. 104-113
[7] Martensitic transformation criteria in Cu–Al–Be shape memory alloy – in situ analysis, Materials Science and Engineering A, Volume 438–440 (2006), pp. 773-778
[8] In situ observations of martensitic transformations in Ti50Ni34Cu16 alloy by synchrotron radiation, Materials Science and Engineering A, Volume 438–440 (2006), pp. 480-484
[9] F. Bruneseaux, G. Geandier, E. Aeby-Gautier, M. Dehmas, P. Boulet, In situ characterization of the transformation sequences of Ti17 alloy by high energy X-ray diffraction. Influence of the thermal path, in: Ti-2007 Science and Technology, Proc. 11th Conference on Titanium JIMIC, vol. 5, 2007, pp. 565–566.
[10] Martensitic transformation of individual grains in low-alloyed TRIP steels, Scripta Materialia, Volume 56 (2007), pp. 421-424
[11] In situ characterizations of phase transformations kinetics in the Ti17 titanium alloy by electrical resistivity and high temperature synchrotron X-ray diffraction, Materials Science and Engineering A, Volume 476 (2008), pp. 60-68
[12] F. Bruneseaux, Apport de la diffraction des rayons X à haute énergie sur lʼétude des transformations de phases. Application aux alliages de titane, PhD thesis, Institut National Polytechnique de Lorraine, 2008.
[13] B. Malard, Caractérisation multiéchelle par diffraction de neutrons et rayonnement synchrotron de la transformation martensitique sous contrainte dans un alliage à mémoire de forme CuAlBe, PhD thesis, École Nationale Supérieure dʼArts et Métiers, 2008.
[14] Influence of the austempering temperature on the microstructure and crystallography of a carbide-free bainitic steel, Solid State Phenomena, Volume 172–174 (2011), pp. 797-802
[15] Experiments with very high energy synchrotron radiation, Journal of Synchrotron Radiation, Volume 5 (1998), pp. 286-292
[16] Depth capabilities of neutron and synchrotron diffraction strain measurement instruments. I. The maximum feasible path length, Journal of Applied Crystallography, Volume 57 (2004), pp. 596-606
[17] Applications of high-energy synchrotron radiation for structural studies of polycrystalline materials, Journal of Synchrotron Radiation, Volume 4 (1997), pp. 147-154
[18] Application of high-energy synchrotron radiation for texture studies, Journal of Applied Crystallography, Volume 31 (1999), pp. 364-371
[19] High-energy X-rays: a tool for advanced bulk investigations in materials science and physics, Textures and Microstructures, Volume 35 (2003), pp. 219-252
[20] A. Gurgey-Bénéteau, Étude des conditions de dissolution des carbures dans les aciers à roulement martensitiques à haute teneur en azote, PhD thesis, Institut National Polytechnique de Lorraine, 2007.
[21] MAR-research, Hamburg, http://www.rayonix.com/products/sx_165.htm, 2011.
[22] The fast readout low noise camera as a versatile X-ray detector for time resolved dispersive extended X-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis, Review of Scientific Instruments, Volume 78 (2007), p. 091301
[23] High-energy X-ray diffraction using the Pixium 4700 flat-panel detector, Journal of Synchrotron Radiation, Volume 16 (2009), pp. 463-468
[24] Calibration and correction of spatial distortions in 2D detector systems, Nuclear Instruments & Methods in Physics Research A, Volume 346 (1994), pp. 312-321
[25] A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, Volume 2 (1969), pp. 65-71
[26] Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, Volume 192 (1993), pp. 55-69
[27] Microstructural formation in Ti alloys: In-situ characterization of phase transformation kinetics, Journal of Materials ( January 2007 ), pp. 55-58
[28] Analysis of the mechanical behaviour of metastable β titanium alloys. Influence of the phase transformation (G. Lütjering; J. Albrecht, eds.), Ti-2003, Science and Technology, Proc. 10th Conference on Titanium, Wiley–VCH, 2003, pp. 1599-1606
[29] L. Héricher, Prévision des microstructures lors du traitement thermique dʼalliage de titane, PhD thesis, Institut National Polytechnique de Lorraine, 2004.
[30] isothermal phase transformation in Ti17 titanium alloy: chemical composition and crystallographic aspect, Solid State Phenomena, Volume 172–174 (2011), p. 396
[31] Precipitation in a near β titanium alloy on ageing: Influence of heating rate and chemical composition of the β-metastable phase, Solid State Phenomena (2011), pp. 760-765
[32] Décomposition de la phase β-metastable de lʼalliage de titane β-cez au cours du chauffage et du recuit, Journal de Physique IV, Volume 4 (1994), pp. 99-103
[33] Effects of ω-phase precipitation on β, α, transformations in a metastable β titanium alloy, Materials Science and Engineering A (2001), pp. 182-188
[34] Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy, Scripta Materialia (2006), pp. 645-648
[35] ω-assisted nucleation and growth of α precipitates in the Ti5Al5Mo5V3Cr0.5Fe β titanium alloy, Acta Materialia (2009), pp. 2136-2147
[36] Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment, Metallurgical and Materials Transactions A, Volume 34 (2003) no. 1, pp. 147-158
[37] Decomposition of β-metastable phase in β-cez alloy during continuous heating, Journal de Physique IV, Volume 3 (1993), pp. 527-531
[38] In situ synchrotron X-ray analysis of the behaviour of a martensitic stainless steel during ageing (G.O. et al., eds.), ICOMAT-08, TMS, 2008, pp. 191-198
[39] High Nitrogen Steels, Springer-Verlag, 1999 (ISBN: 3-540-66411-4)
[40] Lattice parameters of ironcarbon and ironnitrogen martensites and austenite, Scripta Metallurgica et Materialia, Volume 24 (1990), pp. 509-514
[41] Évolutions des microstructures à lʼétat solide dans des matériaux polycristallins. Apport de la DRX à haute énergie aux études de cinétique et au comportement des phases (P. Goudeau; R. Guinebretière, eds.), Rayons X et Matière (RX2009), Hermès Science, Lavoisier, 2011 http://www.lavoisier.fr/livre/notice.asp?id=3LKWX3A23LKOWL (Chapter 5)
Cité par Sources :
Commentaires - Politique