Comptes Rendus
Use of large scale facilities for research in metallurgy
Following individual grains during solid-state phase transformations with 3DXRD microscopy
Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 268-279.

The mechanical properties of metals strongly depend on the microstructure, which is formed during their production and processing. Understanding the underlying mechanisms of the nucleation and growth kinetics during solid-state phase transformations in steel is of vital importance to control its microstructure. The kinetics of individual grains in the bulk of steel can be measured in situ with the three-dimensional X-ray diffraction microscopy (3DXRD) at the European synchrotron radiation facility (ESRF). Simultaneously the fraction transformed, the nucleation rate, and the growth rate of individual grains can be measured. Unique in situ measurements of nucleation and growth rates of individual austenite and ferrite grains are presented.

Les propriétés mécaniques des métaux dépendent fortement de leur microstructure, qui est formée lors de leur production et procédés. La compréhension des mécanismes complexes sous-jacents aux cinétiques de germination et croissance lors de transformations de phases à lʼétat solide dans les aciers est dʼune importance vitale pour contrôler leurs microstructures. La cinétique de formation de grains individuels dans le volume dʼun acier peut être mesurée in situ grâce à la microscopie tri-dimensionnelle à diffraction de rayons X (3DXRD) au synchrotron européen ESRF. Cette technique permet de mesurer simultanément la fraction transformée, le taux de germination et la vitesse de croissance de grains individuels. Nous présentons dans cet article des mesures uniques de taux de germination et de croissance de grains individuels dʼausténite et de ferrite.

Published online:
DOI: 10.1016/j.crhy.2011.12.002
Keywords: 3DXRD, Microstructure, ESRF
Mot clés : 3DXRD, Microstructure, ESRF

S. Eric Offerman 1; Hemant Sharma 1

1 Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
@article{CRPHYS_2012__13_3_268_0,
     author = {S. Eric Offerman and Hemant Sharma},
     title = {Following individual grains during solid-state phase transformations with {3DXRD} microscopy},
     journal = {Comptes Rendus. Physique},
     pages = {268--279},
     publisher = {Elsevier},
     volume = {13},
     number = {3},
     year = {2012},
     doi = {10.1016/j.crhy.2011.12.002},
     language = {en},
}
TY  - JOUR
AU  - S. Eric Offerman
AU  - Hemant Sharma
TI  - Following individual grains during solid-state phase transformations with 3DXRD microscopy
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 268
EP  - 279
VL  - 13
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.12.002
LA  - en
ID  - CRPHYS_2012__13_3_268_0
ER  - 
%0 Journal Article
%A S. Eric Offerman
%A Hemant Sharma
%T Following individual grains during solid-state phase transformations with 3DXRD microscopy
%J Comptes Rendus. Physique
%D 2012
%P 268-279
%V 13
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.12.002
%G en
%F CRPHYS_2012__13_3_268_0
S. Eric Offerman; Hemant Sharma. Following individual grains during solid-state phase transformations with 3DXRD microscopy. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 268-279. doi : 10.1016/j.crhy.2011.12.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.002/

[1] T. Furuhara; T. Shinyoshi; G. Miyamoto; J. Yamaguchi; N. Sugita; N. Kimura; N. Takemura; T. Maki Multiphase crystallography in the nucleation of intragranular ferrite on MnS plus V(C, N) complex precipitate in austenite, ISIJ International, Volume 43 (2003), p. 2028

[2] Y. Ivanisenko; I. MacLaren; X. Sauvage; R.Z. Valiev; H.J. Fecht Shear-induced alpha → gamma transformation in nanoscale Fe–C composite, Acta Materialia, Volume 54 (2006), p. 1659

[3] W.T. Reynolds; S.S. Brenner; H.I. Aaronson An Fim/Ap study of the Mo concentration within ferrite austenite interfaces in an Fe-0.88 at-percent C-1.06 at-percent Mo alloy, Scripta Metallurgica, Volume 22 (1988), p. 1343

[4] E.V. Pereloma; I.B. Timokhina; M.K. Miller; P.D. Hodgson Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels, Acta Materialia, Volume 55 (2007), p. 2587

[5] Y. Adachi; K. Hakata; K. Tsuzaki Crystallographic analysis of grain boundary Bcc-precipitates in a Ni–Cr alloy by FESEM/EBSD and TEM/Kikuchi line methods, International Conference on Recent Advances in Composite Materials (ICRACM 2004), Varanasi, India, Elsevier Science Sa, 2004, p. 252

[6] H. Landheer; S.E. Offerman; R.H. Petrov; L.A.I. Kestens The role of alpha/gamma orientation relationships during ferrite nucleation in an Fe–Cr–Ni alloy, Recrystallization and Grain Growth III, Volume 558–559 (2007) no. Pts 1 and 2, p. 1413

[7] A.F. Gourgues-Lorenzon Application of electron backscatter diffraction to the study of phase transformations, International Materials Reviews, Volume 52 (2007), p. 65

[8] W. Ludwig; S. Schmidt; E.M. Lauridsen; H.F. Poulsen X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case, Journal of Applied Crystallography, Volume 41 (2008), p. 302

[9] H.F. Poulsen; S. Garbe; T. Lorentzen; D.J. Jensen; F.W. Poulsen; N.H. Andersen; T. Frello; R. Feidenhansl; H. Graafsma Applications of high-energy synchrotron radiation for structural studies of polycrystalline materials, Journal of Synchrotron Radiation, Volume 4 (1997), p. 147

[10] H.F. Poulsen; S.F. Nielsen; E.M. Lauridsen; S. Schmidt; R.M. Suter; U. Lienert; L. Margulies; T. Lorentzen; D.J. Jensen Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders, Journal of Applied Crystallography, Volume 34 (2001), p. 751

[11] H.F. Poulsen Three-Dimensional X-Ray Diffraction Microscopy-Mapping Polycrystals and Their Dynamics, Springer, Berlin, 2004

[12] E.M. Lauridsen; S. Schmidt; R.M. Suter; H.F. Poulsen Tracking: a method for structural characterization of grains in powders or polycrystals, Journal of Applied Crystallography, Volume 34 (2001), p. 744

[13] S. Schmidt; S.F. Nielsen; C. Gundlach; L. Margulies; X. Huang; D.J. Jensen Watching the growth of bulk grains during recrystallization of deformed metals, Science, Volume 305 (2004), p. 229

[14] Advanced Tomographic Methods in Materials Research and Engineering (J. Banhart, ed.), Oxford University Press, Oxford, 2008

[15] L. Margulies; M.J. Kramer; R.W. McCallum; S. Kycia; D.R. Haeffner; J.C. Lang; A.I. Goldman New high temperature furnace for structure refinement by powder diffraction in controlled atmospheres using synchrotron radiation, Review of Scientific Instruments, Volume 70 (1999), p. 3554

[16] J.C. Labiche; O. Mathon; S. Pascarelli; M.A. Newton; G.G. Ferre; C. Curfs; G. Vaughan; A. Homs; D.F. Carreiras The fast readout low noise camera as a versatile X-ray detector for time resolved dispersive extended X-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis, Review of Scientific Instruments, Volume 78 (2007), p. 091301

[17] S.E. Offerman, Evolving microstructures in carbon steel, A neutron and synchrotron radiation study, PhD thesis, Delft University of Technology, Delft, 2003, p. 141.

[18] S.E. Offerman; N.H. van Dijk; J. Sietsma; S. Grigull; E.M. Lauridsen; L. Margulies; H.F. Poulsen; M.T. Rekveldt; S. van der Zwaag Grain nucleation and growth during phase transformations, Science, Volume 298 (2002), p. 1003

[19] S.E. Offerman; H. Sharma Grain nucleation and growth of individual austenite and ferrite grains studied by 3DXRD microscopy at the ESRF (T. Kannengiesser; S.S. Babu; Y. Komizo; A.J. Ramirez, eds.), In-situ Studies with Photons, Neutrons and Electrons Scattering, Springer-Verlag, Berlin, 2010, p. 41

[20] J.W. Christian The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1981

[21] T. Nagano; M. Enomoto Calculation of the interfacial energies between alpha and gamma iron and equilibrium particle shape, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 37 (2006), p. 929

[22] S.E. Offerman Microstructures in 4D, Science, Volume 305 (2004), p. 190

[23] S.E. Offerman; N.H. van Dijk; J. Sietsma; E.M. Lauridsen; L. Margulies; S. Grigull; H.F. Poulsen; S. van der Zwaag Solid-state phase transformations involving solute partitioning: modeling and measuring on the level of individual grains, Acta Materialia, Volume 52 (2004), p. 4757

[24] S.E. Offerman; N.H. van Dijk; J. Sietsma; S. van der Zwaag; E.M. Lauridsen; L. Margulies; S. Grigull; H.F. Poulsen Reply to the discussion by Aaronson et al., to “Grain nucleation and growth during phase transformations” by S.E. Offerman et al., Science 298, 1003 (November 1, 2002), Scripta Materialia, Volume 51 (2004), p. 937

[25] S.E. Offerman; N.H. van Dijk; J. Sietsma; E.M. Lauridsen; L. Margulies; S. Grigull; H.F. Poulsen; S. van der Zwaag Phase transformations in steel studied by 3DXRD microscopy, Nuclear Instruments & Methods in Physics Research Section B – Beam Interactions with Materials and Atoms, Volume 246 (2006), p. 194

[26] S.E. Offerman; H. Strandlund; N.H. van Dijk; J. Sietsma; E.M. Lauridsen; L. Margulies; H.F. Poulsen; J. Agren; S. van der Zwaag Ferrite formation during slow continuous cooling in steel, Fundamentals of Deformation and Annealing, Volume 550 (2007), p. 357

[27] C.E. Krill; L. Helfen; D. Michels; H. Natter; A. Fitch; O. Masson; R. Birringer Size-dependent grain-growth kinetics observed in nanocrystalline Fe, Physical Review Letters, Volume 86 (2001), p. 842

[28] S.E. Offerman; N.H. van Dijk; J. Sietsma; E.M. Lauridsen; L. Margulies; S. Grigull; H.F. Poulsen; S. van der Zwaag Phase transformations in steel studied by 3DXRD microscopy, Nuclear Instruments & Methods in Physics Research Section B – Beam Interactions with Materials and Atoms, Volume 246 (2006), p. 194

[29] D.J. Jensen; S.E. Offerman; J. Sietsma 3DXRD characterization and modeling of solid-state transformation processes, MRS Bulletin, Volume 33 (2008), p. 621

[30] W.F. Lange; M. Enomoto; H.I. Aaronson The kinetics of ferrite nucleation at austenite grain-boundaries in Fe–C alloys, Metallurgical Transactions A – Physical Metallurgy and Materials Science, Volume 19 (1988), p. 427

[31] P.J. Clemm; J.C. Fisher The influence of grain boundaries on the nucleation of secondary phases, Acta Metallurgica, Volume 3 (1955), p. 70

[32] W.F. Lange; M. Enomoto; H.I. Aaronson The kinetics of ferrite nucleation at austenite grain-boundaries in Fe–C alloys, Metallurgical Transactions A – Physical Metallurgy and Materials Science, Volume 19 (1988), p. 427

[33] E.M. Lauridsen; D.J. Jensen; H.F. Poulsen; U. Lienert Kinetics of individual grains during recrystallization, Scripta Materialia, Volume 43 (2000), p. 561

[34] C. Zener Theory of growth of spherical precipitates from solid solution, Journal of Applied Physics, Volume 20 (1949), p. 950

[35] W.M. Huang; M. Hillert The role of grain corners in nucleation, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 27 (1996), p. 480

[36] V.I. Savran; S.E. Offerman; J. Sietsma Austenite nucleation and growth observed on the level of individual grains by three-dimensional X-ray diffraction microscopy, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 41A (2010), pp. 583-591

[37] http://www.npl.co.uk/advanced-materials/measurement-techniques/modelling/mtdata

[38] V.I. Savran; Y. Van Leeuwen; D.N. Hanlon; C. Kwakernaak; W.G. Sloof; J. Sietsma Microstructural features of austenite formation in C35 and C45 alloys, Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science, Volume 38 (2007), p. 946

[39] G.R. Speich; V.A. Demarest; R.L. Miller Formation of austenite during intercritical annealing of dual-phase steels, Metallurgical Transactions A – Physical Metallurgy and Materials Science, Volume 12 (1981), p. 1419

[40] H. Sharma; A.C. Wattjes; M. Amirthalingam; T. Zuidwijk; N. Geerlofs; S.E. Offerman Multipurpose furnace for in situ studies of polycrystalline materials using synchrotron radiation, Review of Scientific Instruments, Volume 80 (2009), p. 7

Cited by Sources:

Comments - Policy