Comptes Rendus
Use of large scale facilities for research in metallurgy
Bulk evaluation of ductile damage development using high resolution tomography and laminography
Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 328-336.

Ductile fracture of metals is accompanied at the microscopic scale with the appearance of damage, in the form of small cavities. Damage progress is divided into three distinct and consecutive phases: initiation, growth and coalescence. This article illustrates the use of three-dimensional nondestructive imaging to study this damage development. Two techniques, mainly based on the attenuation of X-rays are now used for this type of studies at high resolution: tomography and laminography. The interest of laminography is that samples with larger dimensions (in the form of sheets) than the conventional tomography ones can be used. Examples of images obtained with the two techniques, as well as quantification using X-ray tomography, are presented.

La rupture ductile des métaux est accompagnée du processus microscopique dʼapparition dʼendommagement, sous forme de cavités de dimension micronique. Cet endommagement est décomposé en trois phases distinctes et consécutives : lʼamorçage, la croissance puis la coalescence. Cet article recense et illustre lʼutilisation de lʼimagerie tridimensionnelle non destructive pour lʼétude microscopique de cet endommagement. Deux techniques basées sur lʼabsorption des rayons X sont maintenant utilisables à haute résolution : la tomographie et la laminographie. La laminographie présente lʼintérêt dʼautoriser lʼutilisation dʼéchantillons de grandes dimensions (plaques) comparées aux petites éprouvettes de tomographie habituelles. Des exemples dʼimages obtenues à lʼaide de ces deux techniques ainsi que les méthodes de quantification de lʼendommagement par traitement dʼimage dans la cas de la tomographie sont présentés.

Published online:
DOI: 10.1016/j.crhy.2011.12.009
Keywords: X-ray, Tomography, Laminography, Damage, Fracture, Ductile
Mot clés : Rayons X, Tomographie, Laminographie, Endommagement, Rupture, Ductile

Eric Maire 1; Thilo Morgeneyer 2; Caroline Landron 1; Jerome Adrien 1; Lukas Helfen 3

1 Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 7, avenue Jean-Capelle, 69621 Villeurbanne, France
2 Mines ParisTech, centre des materiaux, CNRS UMR 7633, BP87, 91003 Evry cedex, France
3 ANKA/Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
@article{CRPHYS_2012__13_3_328_0,
     author = {Eric Maire and Thilo Morgeneyer and Caroline Landron and Jerome Adrien and Lukas Helfen},
     title = {Bulk evaluation of ductile damage development using high resolution tomography and laminography},
     journal = {Comptes Rendus. Physique},
     pages = {328--336},
     publisher = {Elsevier},
     volume = {13},
     number = {3},
     year = {2012},
     doi = {10.1016/j.crhy.2011.12.009},
     language = {en},
}
TY  - JOUR
AU  - Eric Maire
AU  - Thilo Morgeneyer
AU  - Caroline Landron
AU  - Jerome Adrien
AU  - Lukas Helfen
TI  - Bulk evaluation of ductile damage development using high resolution tomography and laminography
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 328
EP  - 336
VL  - 13
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.12.009
LA  - en
ID  - CRPHYS_2012__13_3_328_0
ER  - 
%0 Journal Article
%A Eric Maire
%A Thilo Morgeneyer
%A Caroline Landron
%A Jerome Adrien
%A Lukas Helfen
%T Bulk evaluation of ductile damage development using high resolution tomography and laminography
%J Comptes Rendus. Physique
%D 2012
%P 328-336
%V 13
%N 3
%I Elsevier
%R 10.1016/j.crhy.2011.12.009
%G en
%F CRPHYS_2012__13_3_328_0
Eric Maire; Thilo Morgeneyer; Caroline Landron; Jerome Adrien; Lukas Helfen. Bulk evaluation of ductile damage development using high resolution tomography and laminography. Comptes Rendus. Physique, Volume 13 (2012) no. 3, pp. 328-336. doi : 10.1016/j.crhy.2011.12.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.009/

[1] S. Goods; L. Brown Acta Metall., 27 (1979), pp. 1-15

[2] G. LeRoy; J.D. Embury; G. Edwards; M.F. Ashby Acta Metall., 29 (1981), pp. 1509-1522

[3] A.S. Argon; J. Im; R. Safoglu Metall. Trans. A, 6 (1975), pp. 825-837

[4] K.E. Puttick Philos. Mag., 4 (1959), pp. 964-969

[5] S. Floreen; H. Hayden Scripta Metall., 4 (1970), pp. 87-94

[6] T.B. Cox; J.R.J. Low Metall. Trans., 5 (1974), pp. 1457-1470

[7] A. Thompson Metall. Trans. A, 18 (1987), pp. 1877-1886

[8] J. Knott Met. Sci. (1980), pp. 327-336

[9] I.G. Park; A.W. Thompson Acta Metall., 36 (1988), pp. 1653-1664

[10] B. Marini; F. Mudry; A. Pineau Eng. Fract. Mech., 22 (1985), pp. 989-996

[11] P. Thomason J. Inst. Met., 96 (1968), pp. 360-365

[12] F.M. Beremin Cavity formation from inclusions in ductile fracture of A508 steel, Metall. Trans. A, Volume 12 (1981), pp. 723-731

[13] C.C. Chu; A. Needleman J. Eng. Mater. Technol., 102 (1980), pp. 249-256

[14] J.R. Rice; D.M. Tracey J. Mech. Phys. Sol., 17 (1969), pp. 201-217

[15] A.L. Gurson J. Eng. Mater. Technol., 99 (1977), pp. 2-15

[16] L.M. Brown; J.D. Embury Proc. 3rd Int. Conf. Strength of Metals and Alloys, Institute of Metals, London, 1973, pp. 164-168

[17] F. Bron; J. Besson; A. Pineau Mater. Sci. Eng. A, 380 (2004), pp. 356-364

[18] T.F. Morgeneyer; J. Besson; H. Proudhon; M.J. Starink; I. Sinclair Acta Mater., 57 (2009), pp. 3902-3915

[19] M.J. Worswick; Z.T. Chen; A.K. Pilkey; D. Lloyd; S. Court Acta Mater., 49 (2001), pp. 2791-2803

[20] O.S. Orlov; M.J. Worswick; E. Maire et al. J. Eng. Mater. Techol. ASME, 131 (2009) no. 2 (Article Number 021001)

[21] L. Babout; E. Maire; R. Fougères Acta Mater., 52 (2004), pp. 2475-2487

[22] E. Maire; O. Bouaziz; M. Di Michiel; C. Verdu Acta Mater., 56 (2008), pp. 4954-4964

[23] A. Weck; D. Wilkinson; E. Maire; H. Toda Acta Mater., 56 (2008) no. 12, pp. 2919-2928

[24] J.Y. Buffière; E. Maire; J. Adrien; J.P. Masse; E. Boller Exp. Mech., 50 (2010), pp. 289-305

[25] L. Helfen; T. Baumbach; P. Mikulík; D. Kiel; P. Pernot; P. Cloetens; J. Baruchel Appl. Phys. Lett., 86 (2005), p. 071915

[26] L. Helfen; A. Myagotin; P. Mikulík; P. Pernot; A. Voropaev; M. Elyyan; M. Di Michiel; J. Baruchel; T. Baumbach On the implementation of computed laminography using synchrotron radiation, Rev. Sci. Instrum., Volume 82 (2011), p. 063702

[27] A.J. Moffat; P. Wright; L. Helfen; T. Baumbach; G. Johnson; S.M. Spearing; I. Sinclair Scripta Mater., 62 (2010), pp. 97-100

[28] F. Xu; L. Helfen; A.J. Moffat; G. Johnson; I. Sinclair; T. Baumbach J. Synchrotron Rad., 17 (2010), pp. 222-226

[29] M.V. Uz; M. Koçak; F. Lemaitre; J.C. Ehrström; S. Kemp; F. Bron Int. J. Fatigue, 31 (2009), pp. 916-926

[30] J. Lorthios; F. Nguyen; A.F. Gourgues; T.F. Morgeneyer; P. Cugy Scripta Mater., 63 (2010), pp. 1220-1223

[31] H. Toda; E. Maire; S. Yamauchi; H. Tsuruta; T. Hiramatsu; M. Kobayashi Acta Mater., 59 (2011), pp. 1995-2008

[32] J. Baruchel; J.Y. Buffiere; P. Cloetens; M. Di Michiel; E. Ferrie; W. Ludwig; E. Maire; L. Salvo Scripta Mater., 55 (2006), pp. 41-46

[33] J.-Y. Buffiere; E. Maire; P. Cloetens; G. Lormand; R. Fougeres Acta Mater., 47 (1999), pp. 1613-1625

[34] L. Babout; E. Maire; J.-Y. Buffière; R. Fougères Acta Mater., 49 (2001), pp. 2055-2063

[35] E. Maire; A. Owen; J.-Y. Buffière; P.J. Withers Acta Mater., 49 (2001), pp. 143-153

[36] E. Maire; J.C. Grenier; D. Daniel; A. Baldacci; H. Klöcker; A. Bigot Scripta Mater., 55 (2006), pp. 123-126

[37] H. Matsumoto; H. Yoneda; K. Sato; T.J. Konno; S. Kurosu; D. Fabregue; E. Maire; A. Chiba Key Eng. Mater., 436 (2010), pp. 171-177

[38] S. Kurosu; H. Matsumoto; A. Chiba; C. Landron; D. Fabregue; E. Maire Scripta Mater., 64 (2010), pp. 367-370

[39] C.F. Martin; C. Josserond; L. Salvo; J.J. Blandin; P. Cloetens; E. Boller Scripta Mater., 42 (2000), pp. 375-381

[40] C. Landron; O. Bouaziz; E. Maire; J. Adrien Scripta Mater., 63 (2010), pp. 973-976

[41] E. Maire; V. Carmona; J. Courbon; W. Ludwig Acta Mater., 55 (2007), pp. 6806-6815

[42] A.B. Phillion; P.D. Lee; S.L. Cockcroft; E. Maire Metall. Mater. Trans. A, 39 (2008), pp. 2459-2469

[43] G. Requena; P. Cloetens; W. Altendorfer; C. Poletti; D. Tolnai; F. Warchomicka; H.P. Degischer Scripta Mater., 61 (2009), pp. 760-763

[44] L. Helfen; A. Myagotin; P. Pernot; M. DiMichiel; P. Mikulík; A. Berthold; T. Baumbach Nucl. Instrum. Meth. A, 563 (2006), pp. 163-166

[45] L. Helfen; A. Myagotin; A. Rack; P. Pernot; P. Mikulík; M. DiMichiel; T. Baumbach Phys. Stat. Sol. (a), 204 (2007), pp. 2760-2765

[46] P. Cloetens; M. Pateyron-Salomé; J.Y. Buffière; G. Peix; J. Baruchel; F. Peyrin; M. Schlenker J. Appl. Phys., 81 (1997), pp. 5878-5885

[47] D. Paganin; S.C. Mayo; T.E. Gureyev; P.R. Miller; S.W. Wilkins J. Microscopy, 206 (2002), pp. 33-40

[48] L. Helfen; T. Baumbach; P. Cloetens; J. Baruchel Appl. Phys. Lett., 94 (2009), p. 104103

[49] T.F. Morgeneyer; M.J. Starink; I. Sinclair Acta Mater., 56 (2008), pp. 1671-1679

[50] Nathalie Limodin; Julien Réthoré; Jean-Yves Buffière; Anthony Gravouil; François Hild; Stéphane Roux Acta Mater., 57 (2009), pp. 4090-4101

[51] A. Deschamps; L. Lae; P. Guyot In situ small-angle scattering study of the precipitation kinetics in an AlZrSc alloy, Acta Mater., Volume 55 (2007), pp. 2775-2783

[52] Xiao Pan, Xianglin Wu, Kun Mo, Xiang Chen, Jonathan Almer, Jan Ilavsky, Dean R. Haeffner, James F. Stubbins, J. Nucl. Mater. (2011), in press.

[53] P.J. Bouchard; P.J. Withers; S.A. McDonald; R.K. Heenan Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel, Acta Mater., Volume 52 (2004), pp. 23-34

Cited by Sources:

Comments - Policy