[Progrès récents en imagerie synchrotron aux rayons X durs]
Les sources modernes de rayonnement synchrotron ont permis un développement considérable de l'utilisation des techniques d'imagerie. Des paramètres importants de l'échantillon tels sa densité, composition chimique, état chimique, structure et perfection cristallographique sont cartographiés à deux et, de plus en plus, à trois dimensions. Le développement des nano-sciences exige des efforts pour atteindre une résolution spatiale nanométrique.
Cet article décrit une sélection de techniques d'imagerie et microanalyse utilisant des rayons X durs, qui se sont développées au cours des dernières années, grâce à l'utilisation du haut flux et cohérence des faisceaux synchrotron, tout en exploitant les avancées en optique des rayons X et détecteurs, et les performances accrues des ordinateurs (mémoire, vitesse). Cet article fournit des exemples montrant les possibilités de ces techniques, et de nombreuses références récentes.
Modern synchrotron radiation (SR) sources have dramatically fostered the use of SR-based X-ray imaging. The relevant information such as density, chemical composition, chemical states, structure, and crystallographic perfection is mapped in two, or, increasingly, in three dimensions. The development of nano-science requires pushing spatial resolution down towards the nanoscale.
The present article describes a selection of hard X-ray imaging and microanalysis techniques that emerged over the last few years, by taking advantage of the flux and coherence of the SR beams, as well as exploiting the advances in X-ray optics and detectors, and the increased possibilities of computers (memory, speed). Examples are given to illustrate the opportunities associated with the use of these techniques, and a number of recent references are provided.
Mot clés : Rayonnement synchrotron, Imagerie aux rayons X
José Baruchel 1 ; Pierre Bleuet 1 ; Alberto Bravin 1 ; Paola Coan 1 ; Enju Lima 1 ; Anders Madsen 1 ; Wolfgang Ludwig 1 ; Petra Pernot 1 ; Jean Susini 1
@article{CRPHYS_2008__9_5-6_624_0, author = {Jos\'e Baruchel and Pierre Bleuet and Alberto Bravin and Paola Coan and Enju Lima and Anders Madsen and Wolfgang Ludwig and Petra Pernot and Jean Susini}, title = {Advances in synchrotron hard {X-ray} based imaging}, journal = {Comptes Rendus. Physique}, pages = {624--641}, publisher = {Elsevier}, volume = {9}, number = {5-6}, year = {2008}, doi = {10.1016/j.crhy.2007.08.003}, language = {en}, }
TY - JOUR AU - José Baruchel AU - Pierre Bleuet AU - Alberto Bravin AU - Paola Coan AU - Enju Lima AU - Anders Madsen AU - Wolfgang Ludwig AU - Petra Pernot AU - Jean Susini TI - Advances in synchrotron hard X-ray based imaging JO - Comptes Rendus. Physique PY - 2008 SP - 624 EP - 641 VL - 9 IS - 5-6 PB - Elsevier DO - 10.1016/j.crhy.2007.08.003 LA - en ID - CRPHYS_2008__9_5-6_624_0 ER -
%0 Journal Article %A José Baruchel %A Pierre Bleuet %A Alberto Bravin %A Paola Coan %A Enju Lima %A Anders Madsen %A Wolfgang Ludwig %A Petra Pernot %A Jean Susini %T Advances in synchrotron hard X-ray based imaging %J Comptes Rendus. Physique %D 2008 %P 624-641 %V 9 %N 5-6 %I Elsevier %R 10.1016/j.crhy.2007.08.003 %G en %F CRPHYS_2008__9_5-6_624_0
José Baruchel; Pierre Bleuet; Alberto Bravin; Paola Coan; Enju Lima; Anders Madsen; Wolfgang Ludwig; Petra Pernot; Jean Susini. Advances in synchrotron hard X-ray based imaging. Comptes Rendus. Physique, Volume 9 (2008) no. 5-6, pp. 624-641. doi : 10.1016/j.crhy.2007.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.08.003/
[1] Advanced analytical techniques: platform for nano materials science, Spectrochim. Acta B, Volume 60 (2005), p. 13
[2] Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences, J. Synchrotron Rad., Volume 11 (2004), p. 239
[3] J. Susini, M. Salomé, R. Tucoulou, G. Martinez-Criado, S. Bohic, D. Eichert, P. Bleuet, I. Letard, M. Cotte, J. Cauzid, B. Fayard, R. Baker, S. Labouré, X-ray micro-analysis activities at the ESRF, in: Proc. 8th Int. Conf. X-Ray Microscopy IPAP Conf. Series, vol. 7, 2006, p. 18
[4] La tomographie synchrotron, Traité IC2 “La tomographie”, Editions Hermès, 2002 (Chapter 15, p. 219)
[5] Advances in synchrotron radiation microtomography, Scripta Mater., Volume 55 (2006), p. 41
[6] Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens, Appl. Phys. A, Mat. Sci. Process., Volume 83 (2006), p. 195
[7] Simultaneous tomography and diffraction analysis of creep damage, Science, Volume 308 (2005), p. 92
[8] Fast tomography using quasi-monochromatic undulator radiation, J. Synchrotron Rad., Volume 13 (2006), p. 403
[9] On the formation of voids in internal tin Nb3Sn superconductors, Appl. Phys. Lett., Volume 90 (2007), p. 132510
[10] Extended investigation of porosity in quasicrystals by synchrotron X-ray phase contrast radiography—I: in icosahedral Al–Pd–Mn grains, J. Cryst. Growth, Volume 281 (2005), p. 623
[11] In-situ study of the annealing behaviour of porosity in icosahedral Al–Pd–Mn quasicrystal using third generation X-ray synchrotron radiation imaging, Phys. Rev. B, Volume 69 (2004), p. 144204
[12] In situ observation of pore evolution during melting and solidification of Al–Pd–Mn quasicrystals by synchrotron X-ray radiography, Phil. Mag., Volume 86 (2006), p. 335
[13] Quantitative X-ray phase contrast imaging of air-assisted water sprays with high Weber numbers, Appl. Phys. Lett., Volume 89 (2006), p. 151913
[14] Observation of subnanometre-high surface topography with X-ray reflection phase-contrast microscopy, Nature Phys., Volume 2 (2006), p. 700
[15] Hard X-ray phase imaging using simple propagation of a coherent synchrotron radiation beam, J. Phys. D: Appl. Phys., Volume 32 (1999), p. A145
[16] Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays, Appl. Phys. Lett., Volume 75 (1999), p. 2912
[17] Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network, Proc. Natl. Acad. Sci., Volume 103 (2006), p. 14626
[18] Optimization of phase contrast imaging using hard X-rays, Rev. Sci. Instrum., Volume 76 (2005), p. 1
[19] Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region, Opt. Lett., Volume 32 (2007), p. 1617
[20] Nanoscale zoom tomography with hard X rays using Kirkpatrick–Baez optics, Appl. Phys. Lett., Volume 90 (2007), p. 144104
[21] Biological imaging by soft X-ray diffraction microscopy, Proc. Natl. Acad. Sci., Volume 102 (2005), p. 15343
[22] Three-dimensional GaN–Ga2O3 core shell structure revealed by X-ray diffraction microscopy, Phys. Rev. Lett., Volume 97 (2006), p. 215503
[23] Three-dimensional mapping of a deformation field inside a nanocrystal, Nature, Volume 442 (2006), p. 63
[24] Lensless imaging of magnetic nanostructures by X-ray spectro-holography, Nature, Volume 432 (2004), p. 885
[25] Use of extended and prepared reference objects in experimental Fourier transform X-ray holography, Appl. Phys. Lett., Volume 85 (2004), p. 2454
[26] A practical algorithm for determination of phase from image and diffraction plane pictures, Optik, Volume 35 (1972), p. 237
[27] Phase retrieval algorithms: a comparison, Appl. Opt., Volume 21 (1982), p. 2758
[28] Hard-X-ray lensless imaging of extended objects, Phys. Rev. Lett., Volume 98 (2007), p. 034801
[29] E. Lima, F. Glassmeier, F. Zontone, A. Madsen, unpublished
[30] Imaging whole Escherichia coli bacteria by using single-particle X-ray diffraction, Proc. Natl. Acad. Sci., Volume 100 (2003), p. 110
[31] Electron diffraction of frozen, hydrated protein crystals, Science, Volume 186 (1974), p. 1036
[32] Cryo-electron microscopy of viruses, Nature, Volume 308 (1984), p. 32
[33] Phase-contrast imaging of weakly absorbing materials using hard X-rays, Nature, Volume 373 (1995), p. 595
[34] Exploiting the X-ray refraction contrast with an analyser: the state of the art, J. Phys. D: Appl. Phys., Volume 36 (2003), p. A24
[35] Diffraction enhanced X-ray imaging, Phys. Med. Biol., Volume 42 (1997), p. 2015
[36] A method to extract quantitative information from analyser-based X-ray phase contrast imaging, Appl. Phys. Lett., Volume 82 (2003), p. 3421
[37] Mammography with synchrotron radiation: phase-detection techniques, Radiology, Volume 215 (2000), p. 286
[38] Human breast cancer specimens: diffraction enhanced imaging with histologic correlation improved conspicuity of lesion detail compared with digital radiography, Radiology, Volume 214 (2000), p. 895
[39] Visualisation of calcifications and thin collagen strands in human breast tumour specimens by the diffraction-enhanced imaging technique: a comparison with conventional mammography and histology, Europ. J. Radiol., Volume 53 (2005), p. 226
[40] Quantitative comparison between two-phase contrast techniques: Diffraction Enhanced Imaging and Phase Propagation Imaging, Phys. Med. Biol., Volume 50 (2005), p. 709
[41] High-resolution CT by diffraction enhanced X-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology, Phys. Med. Biol., Volume 52 (2007), p. 2197
[42] Diffraction-enhanced X-ray imaging of articular cartilage, Osteoarthritis Cart., Volume 10 (2002), p. 163
[43] Options and limitations of joint cartilage imaging: DEI in comparison to MRI and sonography, Nuclear Instrum. Methods A, Volume 548 (2005), p. 47
[44] Magnified X-ray phase imaging using asymmetric Bragg reflection: Experiment and theory, Phys. Rev. B, Volume 74 (2006), p. 054107
[45] Fourier optics approach to X-ray analyser-based imaging, Opt. Commun., Volume 270 (2007), p. 180
[46] Analysis of the X-ray refraction using an array-structured detector, Appl. Phys. Lett., Volume 90 (2007), p. 184106
[47] Preliminary study on extremely small angle X-ray scatter imaging with synchrotron radiation, Phys. Med. Biol., Volume 47 (2002), p. 469
[48] Soft X-ray microscopy at a spatial resolution better than 15 nm, Nature, Volume 435 (2005), p. 1210
[49] Focusing hard X-rays to nanometer dimensions by adiabatically focusing lenses, Phys. Rev. Lett., Volume 94 (2005), p. 054802
[50] Efficient focusing of hard X rays to 25 nm by a total reflection mirror, Appl. Phys. Lett., Volume 90 (2007), p. 051903
[51] Nanometer linear focusing of hard X rays by a multilayer Laue lens, Phys. Rev. Lett., Volume 96 (2006), p. 127401
[52] Efficient sub 100 nm focusing of hard X rays, Rev. Sci. Instrum., Volume 76 (2005), p. 063709
[53] Applications of synchrotron-based X-ray microprobes, Chem. Rev., Volume 101 (2001), p. 1809
[54] X-Ray Microprobe for Fluorescence and Diffraction Analysis, Methods in Materials Research: A Current Protocols Publication, John Wiley, New York, 1998
[55] Brine micro-droplets and solid inclusions in accreted ice from Lake Vostok (East Antarctica), Geophys. Res. Lett., Volume 32 (2005), p. L12501
[56] New cryogenic environment for beamline ID22 at the European Synchrotron Radiation Facility, Rev. Sci. Instrum., Volume 78 (2007), p. 025106
[57] Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro spectroscopy experiments at high temperature, Chem. Geol., Volume 231 (2006), p. 350
[58] Low-temperature Zr mobility: An in situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O+HCl± SiO2 fluids, Amer. Mineralogist, Volume 91 (2006), p. 1211
[59] Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T, Biochimica et Biophysica Acta, Volume 1764 (2006), p. 434
[60] et al. Comet 81P/Wild 2 under a microscope, Science, Volume 314 (2006), p. 1711
[61] Sulfur accumulation in the timbers of King Henry VIII's warship Mary Rose: A pathway in the sulfur cycle of conservation concern, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), p. 14165
[62] Blackening of Pompeian Cinnabar paintings studied by X-ray micro-spectroscopic imaging, Analyt. Chem., Volume 78 (2006), p. 7484
[63] Scanning X-ray excited optical luminescence microscopy in GaN, Appl. Phys. Lett., Volume 89 (2006), p. 221913
[64] X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis, Natl. Acad. Sci. USA, Volume 104 (2007), pp. 2247-2252
[65] Nondestructive three-dimensional elemental microanalysis by combined helical X-ray microtomographies, Appl. Phys. Lett., Volume 84 (2004), p. 2199
[66] Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging, Analyt. Chem., Volume 76 (2004), p. 6786
[67] X-ray fluorescence tomography of individual municipal solid waste and biomass fly ash particles, Analyt. Chem., Volume 76 (2004), p. 1586
[68] Phase-mapping of periodically domain-inverted LiNbO3 with coherent X-rays, Nature, Volume 393 (1998), p. 690
[69] Phase retrieval by combined Bragg and Fresnel X-ray diffraction imaging, Phys. Rev. Lett., Volume 81 (1998), p. 3435
[70] Structural matching of ferroelectric domains and associated distortion in KTP crystals, J. Phys.: Condens. Matter, Volume 15 (2003), p. 1613
[71] Distribution and Burgers vectors of dislocations in semiconductor wafers investigated by Rocking Curve Imaging, J. Appl. Cryst., Volume 38 (2005), p. 91
[72] Synchrotron area diffractometry as a tool for spatial high-resolution three dimensional lattice misorientation mapping, J. Phys. D: Appl. Phys., Volume 36 (2003), p. A74
[73] X-ray microdiffraction imaging investigations of wing tilt in epitaxially overgrown GaN, Phys. Stat. Sol. (a), Volume 203 (2006), p. 1733
[74] Crystalline misorientation analysis in Ga-based wafers and ELO samples by rocking curve imaging, Appl. Surf. Sci., Volume 253 (2006), p. 188
[75] Synchrotron radiation topographic study of the thick ferromagnetic-fan interface in MnP, J. Phys. D: Appl. Phys., Volume 38 (2005), p. A67
[76] 3D X-Ray Diffraction Microscopy, Springer Tracts in Modern Physics, Springer, Berlin, 2004
[77] Polychromatic X-ray microdiffraction studies of mesoscale structure and dynamics, J. Synchr. Rad., Volume 12 (2005), p. 155
[78] W. Ludwig, S. Schmidt, E.M. Lauridsen, H.F. Poulsen, Diffraction contrast tomography: a novel technique for 3D grain mapping in polycrystals. Part I: direct beam case, J. Appl. Cryst., submitted for publication
[79] G. Johnson, A. King, M. Gonzalves-Hoennicke, W. Ludwig, Diffraction contrast tomography: a novel technique for 3D grain mapping in polycrystals. Part II: the combined case, J. Appl. Cryst., submitted for publication
[80] Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography, J. Theor. Biol., Volume 29 (1970), p. 471
Cité par Sources :
Commentaires - Politique