[La structure atomique des verres métalliques massifs et de leurs états de liquides surfondus sondée par diffraction de la lumière haute-énergie du synchrotron]
Comme les verres classiques, de nombreux verres métalliques massifs manifestent une température de transition vitreuse
Like non-metallic glasses, many bulk metallic glasses manifest a glass-transition temperature
Here we report on experiments using high-energy, high-flux synchrotron light in the transmission for probing of the atomic structure of bulk metallic glasses. Examples are given of the determination of the isochoric glass transition
Mots-clés : Verres métalliques massifs, Structure atomique, Lumière du synchrotron, Liquide surfondu
K. Georgarakis 1, 2 ; A.R. Yavari 1 ; D.V. Louzguine 2 ; G. Vaughan 3 ; W.J. Botta 4
@article{CRPHYS_2012__13_3_218_0, author = {K. Georgarakis and A.R. Yavari and D.V. Louzguine and G. Vaughan and W.J. Botta}, title = {Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light}, journal = {Comptes Rendus. Physique}, pages = {218--226}, publisher = {Elsevier}, volume = {13}, number = {3}, year = {2012}, doi = {10.1016/j.crhy.2011.12.010}, language = {en}, }
TY - JOUR AU - K. Georgarakis AU - A.R. Yavari AU - D.V. Louzguine AU - G. Vaughan AU - W.J. Botta TI - Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light JO - Comptes Rendus. Physique PY - 2012 SP - 218 EP - 226 VL - 13 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2011.12.010 LA - en ID - CRPHYS_2012__13_3_218_0 ER -
%0 Journal Article %A K. Georgarakis %A A.R. Yavari %A D.V. Louzguine %A G. Vaughan %A W.J. Botta %T Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light %J Comptes Rendus. Physique %D 2012 %P 218-226 %V 13 %N 3 %I Elsevier %R 10.1016/j.crhy.2011.12.010 %G en %F CRPHYS_2012__13_3_218_0
K. Georgarakis; A.R. Yavari; D.V. Louzguine; G. Vaughan; W.J. Botta. Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light. Comptes Rendus. Physique, Use of large scale facilities for research in metallurgy / Utilisation des grands instruments pour la recherche en métallurgie , Volume 13 (2012) no. 3, pp. 218-226. doi : 10.1016/j.crhy.2011.12.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.12.010/
[1] Acta Mater., 48 (2000), p. 279
[2] The Mechanical Properties of Matter, John Wiley and Sons, 1964
[3] Phys. Rev. Lett., 95 (2005), p. 195501
[4] Appl. Phys. Lett., 93 (2008), p. 031907
[5] Acta Mater., 59 (2011), p. 2831
[6] Materials Today, 12 (2009), p. 14
[7] MRS Bull., 32 (2007), p. 635
[8] MRS Bull., 32 (2007), p. 651
[9] MRS Bull., 24 (1999), p. 42
[10] Nature Mat., 3 (2004), p. 697
[11] Nature Mat., 4 (2005), p. 2
[12] Nature, 439 (2006), p. 419
[13] Nature, 439 (2006), p. 405
[14] Nature Mater., 8 (2009), p. 30
[15] J. Alloys Comp., 466 (2008), p. 106
[16] Nature Mater., 10 (2011), p. 28
[17] Nature, 185 (1960), p. 68
[18] Philos. Mag. B, 61 (1990), p. 1
[19] Phys. Lett. A, 95 (1983), p. 165
[20] Nature, 187 (1960), p. 869
[21] Acta Mater., 17 (1969), p. 1021
[22] Acta Met., 20 (1972), p. 493
[23] Mater. Res. Soc. Symposium Proceedings, 554 (1999), p. 21
[24] Acta Mater., 47 (1999), p. 1487
[25] Scientific American, 212 (1965), p. 38
[26] Rep. Progr. Phys., 49 (1986), p. 171
[27] Nature, 342 (1989), p. 568
[28] Nature, 334 (1988), p. 59
[29] Acta Mater., 53 (2005), p. 1611
[30] Phys. Rev., 117 (1960), p. 52
[31] Théories et Techniques de la Radio-christalographie, Dunod, 1964
[32] Acta Metall., 36 (1988), p. 1863
[33] Scripta Mater., 48 (2003), p. 809
[34] Physics of Amorphous Materials, John Wiley & Sons, New York, 1990 (p. 35)
[35] J. Chem. Phys., 31 (1959), p. 1164
[36] Acta Metall., 25 (1977), p. 407
[37] Acta Metall., 27 (1979), p. 47
[38] J. Mater. Res., 1 (1986), p. 746
[39] Philos. Mag. B, 61 (1990), p. 739
[40] Mater. Sci. Eng., 98 (1988), p. 491
[41] Acta Mater., 59 (2011), p. 3817
[42] Lattice Defects in Quenched Metals (R.M.J. Cotterill; M. Doyama; J.J. Jackson; M. Meshii, eds.), Academic Press, 1965, pp. 15-75
[43] Phys. Rev. B., 35 (1987), p. 1945
[44] Philos. Mag. A, 40 (1979), p. 485
[45] J. Appl. Phys., 49 (1978), p. 3289
[46] Mater. Trans. JIM, 41 (2000), p. 1432
[47] Acta Metall. Mater., 28 (1980), p. 1781
[48] Acta Metall. Mater., 38 (1990), p. 383
[49] Philos. Mag. A, 59 (1989), p. 697
[50] J. Mater. Res., 7 (1992), p. 2971
[51] Acta Metall. Mater., 41 (1993), p. 1391
[52] Mat. Sci. Eng. A, 304–306 (2001), p. 34
[53] The Structure of Non-Crystalline Materials, McGraw–Hill, New York, 1980 (p. 670)
[54] Acta Mater., 59 (2011), p. 708
- Avoiding glass spot defect arising from roller hydrogen embrittlement via regulating protective atmosphere distribution, International Journal of Applied Glass Science, Volume 14 (2023) no. 3, p. 425 | DOI:10.1111/ijag.16614
- Probing the structure of a liquid metal during vitrification, Acta Materialia, Volume 87 (2015), p. 174 | DOI:10.1016/j.actamat.2015.01.005
- A Review of High-Energy X-Ray Diffraction from Glasses and Liquids, ISRN Materials Science, Volume 2012 (2012), p. 1 | DOI:10.5402/2012/852905
Cité par 3 documents. Sources : Crossref
Commentaires - Politique