Comptes Rendus
Nanophotonics and near field / Nanophotonique et champ proche
Negative index materials and time-harmonic electromagnetic field
Comptes Rendus. Physique, Volume 13 (2012) no. 8, pp. 786-799.

We study the evanescent waveʼs behavior on a device made of a plane interface separating vacuum from a perfect negative index material. The system is described by the macroscopic Maxwellʼs equations with frequency-dependent permittivity and permeability. Assuming that electromagnetic sources with sinusoidal time dependence are switched on at an initial time, we show that, as time increases, evanescent waves result in surface modes at the plane interface. The time dependence of these surface modes is oscillating but not harmonic since their amplitude linearly increases with time. As a consequence, we find that the image of a point source is not a point image. The analysis avoids any ambiguity related with causality and finite energy requirements.

Nous étudions le comportement des ondes évanescentes en présence dʼune interface plane séparant le vide et un matériau dʼindice négatif parfait. Ce système est modélisé par les équations de Maxwell macroscopiques avec des permittivité et perméabilité fonctions de la fréquence. Nous supposons que le champ électromagnétique est rayonné par des sources variant sinusoïdalement dans le temps après allumage à un instant initial. Nous montrons alors que quand le temps croît, les ondes évanescentes produisent des modes de surface sur lʼinterface plane. Ces modes de surfaces oscillent dans le temps mais ne sont pas harmoniques car leur amplitude croît linéairement dans le temps. Par conséquent, nous montrons que lʼimage dʼun point source nʼest plus ponctuelle. La description évite toute ambigüité relative à la causalité et lʼénergie électromagnétique.

Published online:
DOI: 10.1016/j.crhy.2012.04.003
Keywords: Negative index materials, Flat lens, Evanescent waves, Macroscopic Maxwellʼs equations, Auxiliary field formalism
Mot clés : Matériaux dʼindice négatif, Lentille plate, Ondes évanescentes, Équations de Maxwell macroscopiques

Boris Gralak 1; Daniel Maystre 1

1 Institut Fresnel, CNRS, Aix-Marseille université, campus de Saint Jérôme, 13397 Marseille cedex 20, France
@article{CRPHYS_2012__13_8_786_0,
     author = {Boris Gralak and Daniel Maystre},
     title = {Negative index materials and time-harmonic electromagnetic field},
     journal = {Comptes Rendus. Physique},
     pages = {786--799},
     publisher = {Elsevier},
     volume = {13},
     number = {8},
     year = {2012},
     doi = {10.1016/j.crhy.2012.04.003},
     language = {en},
}
TY  - JOUR
AU  - Boris Gralak
AU  - Daniel Maystre
TI  - Negative index materials and time-harmonic electromagnetic field
JO  - Comptes Rendus. Physique
PY  - 2012
SP  - 786
EP  - 799
VL  - 13
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.04.003
LA  - en
ID  - CRPHYS_2012__13_8_786_0
ER  - 
%0 Journal Article
%A Boris Gralak
%A Daniel Maystre
%T Negative index materials and time-harmonic electromagnetic field
%J Comptes Rendus. Physique
%D 2012
%P 786-799
%V 13
%N 8
%I Elsevier
%R 10.1016/j.crhy.2012.04.003
%G en
%F CRPHYS_2012__13_8_786_0
Boris Gralak; Daniel Maystre. Negative index materials and time-harmonic electromagnetic field. Comptes Rendus. Physique, Volume 13 (2012) no. 8, pp. 786-799. doi : 10.1016/j.crhy.2012.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.003/

[1] J.B. Pendry Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969

[2] V.G. Veselago The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp., Volume 10 (1968) no. 4, pp. 509-514

[3] N. Garcia; M. Nieto-Vesperinas Left-handed materials do not make a perfect lens, Phys. Rev. Lett., Volume 88 (2002), p. 207403

[4] D. Maystre; S. Enoch Perfect lenses made with left-handed materials: Aliceʼs mirror?, J. Opt. Soc. Am. A, Volume 21 (2004), p. 122

[5] I. Stockman Criterion for negative refraction with low optical losses from a fundamental principle of causality, Phys. Rev. Lett., Volume 98 (2007), p. 177404

[6] A. Tip Linear absorptive dielectric, Phys. Rev. A, Volume 57 (1998), pp. 4818-4841

[7] B. Gralak; A. Tip Macroscopic Maxwellʼs equations and negative index materials, J. Math. Phys., Volume 51 (2010), p. 052902

[8] J.D. Jackson Classical Electrodynamics, Wiley, New York, 1998

[9] J.G. Van Bladel Electromagnetic Fields, John Wiley and Sons, 2007

[10] L.D. Landau; E.M. Lifshitz; L.P. Pitaevskiĭ Electrodynamics of Continuous Media, Courses of Theoretical Physics, vol. 8, Elsevier, Oxford, 1984

[11] D. Maystre; S. Enoch; B. Gralak; G. Tayeb Metamaterials: from microwaves to the visible region, Comptes Rendus Physique, Volume 6 (2005), p. 693

[12] C. Cohen-Tannoudji; B. Diu; F. Laloë Mécanique Quantique, Hermann, 1973

[13] R.E. Collin Frequency dispersion limits resolution in Veselago lens, J. PIER B, Volume 19 (2010), pp. 233-261

[14] W.H. Wee; J.B. Pendry Universal evolution of perfect lenses, Phys. Rev. Lett., Volume 106 (2011), p. 165503

Cited by Sources:

Comments - Policy