We present an original method for uncovering phase maps from surface plasmon resonance microscopy images. The phase images obtained from the recording of maps with a scanning surface plasmon microscope are affected by zero-mean uncorrelated noise and mechanical drifts. We propose to replace standard phase unwrapping methods by the computation of the local derivative of the phase from the complex field. Phase unwrapping basically relies on a smoothness constraint of the phase field, which is severely hampered by the noise. Applications of the proposed derivation to interferometric plasmon phase images demonstrate a superior ability of restoring phase maps, preserving their discontinuities, together with an effective noise smoothing performance, irrespective of locally varying coherence characteristics.
Nous proposons une méthode originale pour extraire les cartes de phase dʼimages obtenues par microscopie à résonance plasmonique. Les images de phases recalculées à partir des cartes complexes incluent également les composantes de bruit et de dérive mécanique, ce qui rend leur déroulement difficile. Nous proposons ici de remplacer les méthodes de déroulement de la phase par le calcul de la dérivée locale de cette phase à partir du champ complexe . Cette méthode de dérivation directe à partir du champ complexe sʼavère beaucoup plus efficace pour restaurer les discontinuités de la phase et permettre également un lissage plus performant du bruit, indépendamment des caractéristiques locales de la cohérence du champ électrique réfléchi après excitation du plasmon de surface.
Mot clés : Résonance plasmonique de surface, Imagerie de phase, Microscopie à balayage à résonance plasmonique, Interférométrie hétérodyne
Françoise Argoul 1, 2; Thibault Roland 1, 2; Audrey Fahys 1, 2; Lotfi Berguiga 1, 2; Juan Elezgaray 3
@article{CRPHYS_2012__13_8_800_0, author = {Fran\c{c}oise Argoul and Thibault Roland and Audrey Fahys and Lotfi Berguiga and Juan Elezgaray}, title = {Uncovering phase maps from surface plasmon resonance images: {Towards} a sub-wavelength resolution}, journal = {Comptes Rendus. Physique}, pages = {800--814}, publisher = {Elsevier}, volume = {13}, number = {8}, year = {2012}, doi = {10.1016/j.crhy.2012.04.004}, language = {en}, }
TY - JOUR AU - Françoise Argoul AU - Thibault Roland AU - Audrey Fahys AU - Lotfi Berguiga AU - Juan Elezgaray TI - Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution JO - Comptes Rendus. Physique PY - 2012 SP - 800 EP - 814 VL - 13 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2012.04.004 LA - en ID - CRPHYS_2012__13_8_800_0 ER -
%0 Journal Article %A Françoise Argoul %A Thibault Roland %A Audrey Fahys %A Lotfi Berguiga %A Juan Elezgaray %T Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution %J Comptes Rendus. Physique %D 2012 %P 800-814 %V 13 %N 8 %I Elsevier %R 10.1016/j.crhy.2012.04.004 %G en %F CRPHYS_2012__13_8_800_0
Françoise Argoul; Thibault Roland; Audrey Fahys; Lotfi Berguiga; Juan Elezgaray. Uncovering phase maps from surface plasmon resonance images: Towards a sub-wavelength resolution. Comptes Rendus. Physique, Volume 13 (2012) no. 8, pp. 800-814. doi : 10.1016/j.crhy.2012.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.04.004/
[1] Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys., Volume 216 (1968), pp. 398-410
[2] Physics of Thin Films, vol. 9, Academic Press, New York, 1977 pp. 145–261 (Chapter III)
[3] Plasmon surface polariton dispersion by direct optical observation, Am. J. Phys. (1980), pp. 669-671
[4] Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays, Anal. Chem., Volume 73 (2001), pp. 1-7
[5] Surface plasmon resonance sensors: review, Sensors and Actuators B, Volume 54 (1999), pp. 3-15
[6] Surface plasmon resonance base sensors (O.S. Wolfbeis, ed.), Springer Ser. Chem. Sens. Biosens., vol. 4, Springer, Berlin/Heidelberg, 2006, pp. 3-44
[7] Investigation of the metal–electrolyte interface using surface plasma waves with ellipsometric detection, Solid State Commun., Volume 16 (1975), pp. 843-847
[8] High sensitivity surface plasmon resonance sensor based on phase detection, Sensors and Actuators B, Volume 35–36 (1996), pp. 187-191
[9] Surface plasmon resonance interferometer for bio and chemical sensors, Opt. Commun., Volume 150 (1998), pp. 5-8
[10] Surface plasmon resonance interferometry for biological and chemical sensing, Sensors and Actuators B, Volume 54 (1999), pp. 43-50
[11] Phase properties of a surface-plasmon resonance from the point of view of sensor applications, Quantum Electron., Volume 28 (1998), pp. 444-448
[12] High resolution angular measurement using surface plasmon resonance via phase interrogation at optimal incident wavelengths, Opt. Lett., Volume 30 (2005), pp. 2727-2729
[13] High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths, Appl. Phys. Lett. A, Volume 88 (2006), p. 141105
[14] Phase jumps and interferometric surface plasmon resonance imaging, Appl. Phys. Lett., Volume 75 (1999), pp. 3917-3919
[15] Surface plasmon resonance phase imaging, Appl. Phys. Lett., Volume 76 (2000) no. 13, pp. 1665-1667
[16] Imaging of surface plasmon launch and propagation using a photon scanning tunneling microscope, Ultramicroscopy, Volume 57 (1995), pp. 287-292
[17] Surface plasmon polariton propagation length: a direct comparison using photon scanning tunneling microscopy and attenuated total reflection, Phys. Rev. B, Volume 63 (2001), p. 205410 (10 pp)
[18] Dark-field surface plasmon microscopy, Opt. Commun., Volume 174 (2000), pp. 151-155
[19] Surface plasmon interferometric microscopy for three dimensional imaging of dynamic processes, Opt. Lett., Volume 31 (2006), pp. 3004-3006
[20] Measurement of refective index change by surface plasmon resonance and phase quadrature interferometry, Opt. Commun., Volume 276 (2007), pp. 283-287
[21] Wavelength-tunable surface plasmon resonance microscope, Rev. Sci. Instrum., Volume 74 (2003), pp. 3182-3184
[22] Excitation of surface plasmon polaritons by a focused laser beam, J. Opt. Soc. Am. B, Volume 15 (1998) no. 4, pp. 1381-1386
[23] Optical for high resolution 2π surface plasmon microscopy, Opt. Lett., Volume 25 (2000) no. 11, pp. 823-825
[24] High resolution scanning surface plasmon microscopy, Appl. Opt., Volume 39 (2000), pp. 6279-6287
[25] Local excitation, scattering and interference of surface plasmons, Phys. Rev. Lett., Volume 77 (1996), pp. 1889-1992
[26] Surface plasmon interference excited by tightly focused laser beams, Opt. Lett., Volume 32 (2007), pp. 2535-2537
[27] Surface plasmon fluorescence microscopy: an analysis, J. Microsc., Volume 206 (2002), pp. 120-131
[28] High resolution wide-field surface plasmon microscopy, J. Microsc., Volume 214 (2004), pp. 328-333
[29] High-resolution surface-plasmon imaging in air and in water: curve and operating conditions, Opt. Lett., Volume 32 (2007) no. 5, pp. 509-511
[30] Surface plasmon resonance imaging using a high numerical aperture microscope objective, Anal. Chem., Volume 79 (2007), pp. 2979-2983
[31] Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination, Appl. Opt., Volume 46 (2007) no. 22, pp. 4985-4990
[32] High resolution surface plasmon resonance real-time imaging, Opt. Lett., Volume 34 (2009), pp. 37-39
[33] Radiative decay of non radiative surface plasmons excited by light, Z. Naturforsch. A, Volume 23 (1968), pp. 2135-2136
[34] Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1997
[35] Solid state excitations by electrons (plasma state excitations by electrons), Springer Tracts Mod. Phys., vol. 38, 1965, pp. 84-157
[36] Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts Mod. Phys., vol. 111, Springer, Berlin, 1988
[37] Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies, Surf. Sci., Volume 603 (2009) no. 22, pp. 3307-3320
[38] Surface plasmon resonance characterization of thermally evaporated thin gold films, Surf. Sci., Volume 601 (2007) no. 23, pp. 5445-5458
[39] Comparison between sensitivities of phase and intensity detection in surface plasmon resonance, Opt. Express, Volume 14 (2006), pp. 5641-5650
[40] Scanning surface plasmon imaging of nanoparticles, Phys. Rev. B, Volume 81 (2010) no. 23, p. 235419
[41] L. Berguiga, F. Argoul, Microscope de plasmon de surface haute résolution à balayage en interférométrie hétérodyne avec polarisation radiale, CNRS-ENS Lyon patent DI01877-01, 2008.
[42] Modeling of scanning surface plasmon microscope, J. Opt. Soc. Amer. A, Volume 27 (2010) no. 3, pp. 450-457
[43] An angular-spectrum approach to contrast in reflection acoustic microscopy, J. Appl. Phys., Volume 40 (1978), pp. 5130-5139
[44] A physical model for acoustic signatures, J. Appl. Phys., Volume 50 (1979), pp. 8237-8239
[45] Acoustic microscopy of elastic discontinuities, Proc. Roy. Soc. Lond. Ser. A, Volume 393 (1984), pp. 171-183
[46] Surface plasmon and surface wave microscopy (P. Torok; F.J. Tao, eds.), Optical Imaging and Microscopy, Springer Ser. Opt. Sci., vol. 87, Springer-Verlag, Berlin/Heidelberg, 2007, pp. 347-399 (Chapter 14)
[47] Amplitude and phase images of cellular structures with a scanning surface plasmon microscope, Opt. Express, Volume 19 (2011), pp. 6571-6586
[48] Goos-hanchen shift surface plasmon resonance sensor, Appl. Phys. Lett., Volume 89 (2006), p. 261108
[49] Near-field observation of spatial phase shifts associated with goos-hanchen and surface plasmon resonance effects, Opt. Express, Volume 16 (2008), pp. 1958-1964
Cited by Sources:
Comments - Policy