Functionalization with surfactants and with active molecules of deoxyribonucleic acid (DNA), thin film processing as well as their nonlinear optical and electrical properties are reviewed and discussed. On the basis of a quantum three level model, we show that the anomalous concentration variation of cubic susceptibility in thin films of DNA–CTMA complexes doped with Disperse Red 1 chromophore can be explained by the concentration variation of two-photon resonance contribution. We show also that the DNA complexes, plasticized with glycerol and adequately doped can be processed into self standing conducting membranes with a high electrical conductivity. The measured ionic conductivity at room temperature, depending on dopant used and its concentration, is in the range of – and increases linearly as a function of temperature, reaching at 358 K for the most conducting sample, obeying predominantly the Arrhenius law. Practical applications of DNA complexes are also described and discussed.
Fonctionnalisation de lʼacide désoxyribonucléique (ADN) avec des composées tensioactifs et avec les molécules actives, la fabrication des films minces ainsi que leurs propriétés optiques linéaires, non linéaires et électriques sont examinées et discutées. Avec lʼaide dʼun modèle quantique à trois niveaux nous montrons que la variation anormale de la susceptibilité cubique en fonction de la concentration du chromophore dans des films minces faits à partir des complexes ADN–CTMA, dopés avec le Disperse Red 1, peut être expliquée par le déplacement de la bande dʼabsorption. Nous décrivons également comment lʼADN peut être plastifié et transformé en membranes conductrices. La conductivité électrique de ces membranes peut être contrôlée par un dopage adéquat avec des ions ou polymères conducteurs. Les membranes obtenues montrent une conductivité électrique élevée. La conductivité, mesurée à lʼambiante, varies entre de et en fonction du dopant utilisé. Elle croit avec la température, pour attendre ca , dans le meilleur cas, à 358 K, en obéissant essentiellement la loi dʼArrhénius. Les applications pratiques des complexes dérivés de lʼADN sont également décrites et discutés.
Mot clés : Lʼacide désoxyribonucléique, LʼADN–CTMA, LʼADN–CTMA fonctionnalisé, Propriétés optiques non linéaires, De troisième génération dʼharmonique trois, Cellule électrochromique solide
Ileana Rau 1; James G. Grote 2; Francois Kajzar 1, 3; Agnieszka Pawlicka 4
@article{CRPHYS_2012__13_8_853_0, author = {Ileana Rau and James G. Grote and Francois Kajzar and Agnieszka Pawlicka}, title = {DNA {\textendash} novel nanomaterial for applications in photonics and in electronics}, journal = {Comptes Rendus. Physique}, pages = {853--864}, publisher = {Elsevier}, volume = {13}, number = {8}, year = {2012}, doi = {10.1016/j.crhy.2012.09.005}, language = {en}, }
TY - JOUR AU - Ileana Rau AU - James G. Grote AU - Francois Kajzar AU - Agnieszka Pawlicka TI - DNA – novel nanomaterial for applications in photonics and in electronics JO - Comptes Rendus. Physique PY - 2012 SP - 853 EP - 864 VL - 13 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2012.09.005 LA - en ID - CRPHYS_2012__13_8_853_0 ER -
%0 Journal Article %A Ileana Rau %A James G. Grote %A Francois Kajzar %A Agnieszka Pawlicka %T DNA – novel nanomaterial for applications in photonics and in electronics %J Comptes Rendus. Physique %D 2012 %P 853-864 %V 13 %N 8 %I Elsevier %R 10.1016/j.crhy.2012.09.005 %G en %F CRPHYS_2012__13_8_853_0
Ileana Rau; James G. Grote; Francois Kajzar; Agnieszka Pawlicka. DNA – novel nanomaterial for applications in photonics and in electronics. Comptes Rendus. Physique, Volume 13 (2012) no. 8, pp. 853-864. doi : 10.1016/j.crhy.2012.09.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.09.005/
[1] Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid, Nature, Volume 171 (1953), pp. 737-738
[2] The complementary structure of deoxyribonucleic acid, Proc. Royal Soc. (London), Volume 223 (1954), pp. 80-96
[3] The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys., Volume 11 (1978) no. 2, pp. 179-246
[5] On the stability and degradation of DNA based thin films, Mol. Cryst. Liq. Cryst., Volume 522 (2010) (180/[480]–190/[490])
[6] Biopolymer thin films for optoelectronics applications, Mol. Cryst. Liq. Cryst., Volume 522 (2010), pp. 530-539
[7] Video-speed electronic paper based on electrowetting, Nature, Volume 425 (2003) no. 6956, pp. 383-385
[8] Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry, Adv. Mater., Volume 20 (2008), pp. 1849-1852
[9] Comparison of theory to experiment for DNA thermal denaturation, Nature, Volume 275 (1978), pp. 250-251
[10] A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, Proc. Natl. Acad. Sci. USA, Volume 95 (1998) no. 4, pp. 1460-1465 (PMID 9465037) | DOI
[11] Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)–cationic surfactant complexes: Large-scale preparation and optical and thermal properties, Chem. Mater., Volume 13 (2001), pp. 1273-1281
[12] Optoelectronic materials derived from salmon deoxyribonucleic acid, Nonl. Opt., Volume 24 (2000), pp. 63-68
[13] Optical and photochromic properties of spiropyran-doped marine-biopolymer DNA–surfactant complex films, Proc. SPIE, Volume 5724 (2005), pp. 234-241
[14] Electroluminescence as a probe for electrical and optical properties of deoxyribonucleic acid, Proc. SPIE, Volume 4464 (2002), pp. 248-255
[15] Optical properties of photochromic-compound-doped marine-biopolymer DNA–surfactant complex films for switching applications, Proc. SPIE, Volume 5351 (2004), p. 260
[16] Ladungstransferprozesse durch die DNA, Chem. Unserer Zeit, Volume 36 (2002), pp. 318-330
[17] Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications, Phys. Lett., Volume 87 (2005), p. 1
[18] Investigation of polymers and marine-derived DNA in optoelectronics, J. Phys. Chem. B, Volume 108 (2004) no. 25, pp. 8584-8591
[19] DNA photonics, Proc. SPIE, Volume 5351 (2004), pp. 77-86
[20] E. Bajer, Modyfikacja DNA dla zastosowań w optyce nieliniowej (Modification of DNA for application in nonlinear optics), Master thesis, Cracow University of Technology, Poland, 2010.
[21] Functional DNA biopolymers and nanocomposite for optoelectronic applications, Opt. Mater., Volume 34 (2012), pp. 1208-1213
[22] Optical properties of deoxyribonucleic acid (DNA) polymer host, Proc. SPIE, Volume 6401 (2006) (6 pp)
[23] J. Grote, Biopolymer materials show promise for electronics and photonics applications, SPIE Newsroom, (2008). | DOI
[24] Poling and optical studies of DNA NLO waveguides, Proc. SPIE, Volume 5934 (2005) (0810-087)
[25] DNA-based nonlinear photonic materials, Proc. SPIE, Volume 5516 (2004), p. 47 | DOI
[26] Development of an all-DNA–surfactant electro-optic modulator, Proc. SPIE, Volume 6117 (2006) (0K1–0K7)
[27] Development and performance of an all-DNA-based electro-optic waveguide modulator, Proc. SPIE, Volume 6401 (2006), p. 640108 (10 pp)
[28] Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer, Appl. Phys. Lett., Volume 89 (2006), p. 181116
[29] Nonlinear optical properties of functionalized DNA–CTMA complexes, Nonl. Opt. Quant. Opt., Volume 43 (2011), pp. 283-323
[30] Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid DNA gate dielectric, Appl. Phys. Lett., Volume 95 (2009) no. 26, p. 263304 (3 pp)
[31] Resistivity and electric-field poling behaviors of DNA-based polymers compared to selected non-DNA polymers, Proc. SPIE, Volume 6646 (2007), p. 664601
[32] Application of DNA in electrochromic cells with switchable transmission, Nonl. Opt. Quant. Opt., Volume 42 (2011), pp. 181-202
[33] Ionically conducting DNA-based membranes for eletrochromic devices, Synth. Met., Volume 161 (2011), pp. 2329-2334
[34] Optical properties of thin films of DNA–CTMA and DNA–CTMA doped with Nile blue, Mol. Cryst. Liq. Cryst., Volume 556 (2012) no. 1, pp. 309-316 | DOI
[35] Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices, Proc. SPIE, Volume 4991 (2003), p. 621
[36] Second order optical nonlinearity in single and triple helical protein supramolecular assemblies, Nonl. Opt. Quant. Opt.: Concepts in Modern Optics, Volume 38 (2009) no. 3–4, pp. 213-225
[37] Nonlinear optical properties of functionalized DNA–CTMA complexes, Nonl. Opt. Quant. Opt., Volume 42 (2011), pp. 283-324
[38] The Principles of Nonlinear Optics, Wiley, New York, 2003
[39] DNA at aqueous/solid interfaces: chirality-based detection via second harmonic generation activity, J. Am. Chem. Soc. (2009), pp. 844-848
[40] Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells, Chin. Phys. B, Volume 19 (2010) no. 5, p. 4950
[41] Observation of optical second harmonic generation in wet-spun films of Na-DNA, Spectrosc. Lett., Volume 26 (1993) no. 5, pp. 849-858
[42] Second-order nonlinear optical properties of chiral materials, Mater. Sci. Eng. R, Volume 42 (2003), pp. 115-155
[43] Molecular Electro-optic Properties of Macromolecules and Colloids in Solution (S. Krause, ed.), Plenum Press, New York, 1981
[44] Electric field orientation of nucleic acids in aqueous solutions. 2. Dependence of the intrinsic electric dichroism and electric dipole moments of rodlike DNA on molecular weight and ionic strength, J. Phys. Chem., Volume 92 (1988), pp. 4994-5001
[45] Electric field orientation of nucleic acids in aqueous solutions. 3. Non-Kerr-law behavior of high molecular weight DNA at weak fields as revealed by electric birefringence and electric dichroism, J. Phys. Chem., Volume 96 (1992) no. 17, pp. 7131-7136
[46] Structural transition produced by electric fields in aqueous sodium deoxyribonucleate, Biophys. J., Volume 5 (1965) no. 4, pp. 607-613
[47] A conformation change of single stranded polyriboadenyiate induced by an electric field, Nucleic Acids Res., Volume 1 (1974), pp. 1601-1618
[48] Colloid and Molecular Electro-Optics (B.R. Jennings; S.P. Stoyov, eds.), Institute of Physics Publ., Bristol, 1993
[49] Application of nonlinear optical techniques to the study of biological molecules, Nonl. Opt., Volume 15 (1996), p. 463
[50] EFISH in electrolyte and polyelectrolyte systems, Mol. Cryst. Liq. Cryst., Sci. Technol., Sect. B: Nonl. Opt., Volume 12 (1995) no. 3, pp. 225-238
[51] Molecular length dependent type polarizability (G. Möhlmann, ed.), Nonlinear Optical Properties of Organic Molecules IX, Proc. SPIE, vol. 2852, 1996, p. 36
[52] Complex nonlinear refractive index of DNA, Chem. Phys. Lett., Volume 431 (2006) no. 1–3, pp. 132-134
[53] Influence of different peripheral substituents on the nonlinear optical properties of cobalt phthalocyanine core, J. Appl. Phys., Volume 101 (2007) no. 8 (083112, 8 pp)
[54] Nonlinear optical properties of functionalized DNA, J. Comput. Methods Sci. Eng., Volume 10 (2010), pp. 531-543 | DOI
[55] Photochromic dye semi-intercalation into DNA-based polymeric matrix: Computer modeling and experiment, Chem. Phys. Lett., Volume 484 (2010), p. 321
[56] Comparison of Z-scan and THG derived nonlinear index of refraction in selected organic solvents, J. Opt. Soc. Am. B, Volume 25 (2008) no. 10, pp. 1738-1747
[57] Perturbation theory of the non-linear optical polarization of an isolated system, Mol. Phys., Volume 20 (1971), pp. 513-526
[58] Fundamental limits on third-order molecular susceptibilities, Opt. Lett., Volume 25 (2000), pp. 1183-1185
[59] Thermal and electrical properties of nucleic acids and proteins, Nature, Volume 188 (1960), pp. 405-406
[60] Mechanism for DNA charge transport, Chem. Rev., Volume 110 (2010), pp. 1642-1662
[61] The problem of DNA conductivity, Pisma ETSCHAIA, Volume 5 (2008) no. 3, pp. 400-406
[62] Semiconductivity of organic substances. 9. Nucleic acid in dry state, Trans. Faraday Soc., Volume 58 (1962) no. 470, pp. 411-417
[63] Organic Semiconducting Polymers (J.E. Katon, ed.), Marcel Dekker, New York, USA, 1968, p. 259
[64] The quest for high-conductance DNA, Rev. Mod. Phys., Volume 76 (2004), p. 195
[65] Charge Migration in DNA: Perspectives from Physics, Chemistry, and Biology (T. Chakraborty, ed.), Springer, Berlin, Germany, 2007, pp. 221-248
[66] Absence of DC conductivity in DNA, Phys. Rev. Lett., Volume 85 (2000), pp. 4992-4995
[67] Electrical conduction through poly(dA)–poly(dT) and poly(dG)–poly(dC) DNA molecules, Phys. Rev. Lett., Volume 87 (2001), p. 198102
[68] Proximity-induced superconductivity in DNA, Science, Volume 291 (2001) no. 5502, pp. 280-282
[69] Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Appl. Phys. Lett., Volume 79 (2001), p. 3881
[70] Electrical conduction through DNA molecules, Nature, Volume 398 (1999), pp. 407-409
[71] Direct measurement of electrical transport through DNA molecules, Nature, Volume 403 (2000) no. 6770, pp. 635-638
[72] DNA-mediated charge transport in redox sensing and signaling, J. Am. Chem. Soc., Volume 132 (2010), pp. 891-905
[73] Dynamics of deoxyribonucleic acid solutions as studied by dielectric relaxation spectroscopy and dynamic mechanical spectroscopy, Macromolecules, Volume 38 (2005), pp. 9854-9864 | DOI
[74] Gelatin- and DNA-based ionic conducting membranes for electrochromic devices, Proc. SPIE, Volume 7487 (2009) (74870J, 10 pp)
[75] DNA-based ionic conducting membranes, J. Appl. Phys., Volume 10 (2011) (033704-5)
[76] Solid Polymer Electrolytes: Fundamentals and Technological Applications, VCH Publishers Inc., 1991
[77] Grating inscription in picosecond regime in thin films of functionalized DNA, Opt. Express, Volume 15 (2007), pp. 15268-15273 (highlighted in: Nat. Photonics, 2, 2007, pp. 6)
[78] Strongly luminescent rare-earth ion-doped DNA–CTMA complex film and fiber materials, Proc. SPIE, Volume 4905 (2002), pp. 143-152
[79] Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer, Appl. Phys. Lett., Volume 88 (2006), p. 171109
[80] DNA – a new material for photonics, Nat. Photonics, Volume 1 (2007), pp. 3-5
[81] DNA: new class of polymer, Proc. SPIE, Volume 6117 (2006) (61170J-6)
[82] Color-tunable multilayer organic light emitting diode composed of DNA complex and tris 8-hydroxyquinolinato aluminium, Appl. Phys. Lett., Volume 97 (2010), p. 193301
[83] BiOLED with DNA/conducting polymer complex as active layer, Nonl. Opt. Quant. Opt., Volume 43 (2011), pp. 233-251
[84] Effect of external electrical stimuli on DNA based biopolymers, Nano, Volume 4 (2009) no. 2, pp. 1-8
[85] Light amplification in dye doped DNA–surfactant complex films, Proc. SPIE, Volume 4106 (2000), pp. 369-376
[86] Amplified spontaneous emission from fluorescent dye-doped DNA–surfactant films, Adv. Mater., Volume 12 (2000), pp. 1281-1283
[87] Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system, Appl. Phys. Lett., Volume 96 (2010), p. 141106 (3 pp)
[88] Study of the amplified spontaneous emission in a dye-doped biopolymer-based material, J. Phys. D: Appl. Phys., Volume 42 (2009) no. 8 (085101)
[89] Optical gain in DNA–DCM, for lasing in photonic materials, Opt. Lett., Volume 34 (2009) no. 24, pp. 3764-3766 | DOI
[90] Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing, Appl. Phys. Lett., Volume 99 (2011) no. 3 (031107, 3 pp)
[91] DNA based solid-state dye lasers, Nonl. Opt. Quant. Opt., Volume 43 (2011), pp. 273-282
[92] Amplified spontaneous emission in the spiropyran-biopolymer based system, Appl. Phys. Lett., Volume 94 (2009), p. 241106 (3 pp)
[93] Infrared two-photon-excited visible lasing from a DNA–surfactant–chromophore complex, Opt. Lett., Volume 31 (2006), pp. 359-361
[94] Biopolymer-based material for optical phase conjugation, J. Optoelectron. Adv. Mater., Volume 10 (2008) no. 8, pp. 2146-2150
[95] Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules, Opt. Mater., Volume 33 (2011), pp. 1382-1386
[96] Development of chemical sensors using polymer optical waveguides fabricated with DNA, Proc. SPIE, Volume 5724 (2005), pp. 224-233
[97] Electronic structure and optical properties of some anthocyanins extracted from grapes, Opt. Mater., Volume 34 (2012) no. 10, pp. 1644-1650
[98] Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA, Biophys. J., Volume 97 (2009), pp. 2348-2357
[99] DNA–lipid hybrid films derived from chiral lipids, Polym. J., Volume 40 (2008) no. 3, pp. 186-191
[100] Characterization of NLO polymer materials for optical waveguide structures, Proc. SPIE, Volume 6117 (2006) (0W1–0W14)
Cited by Sources:
Comments - Policy