The notion of coherent structures in fluid mechanics – distinguishable regions of the flow field that share common properties and are correlated in space and time – has played a significant role in characterizing and modeling turbulent flows. They have not yet, however, truly become predictive tools, in part because there is no universally accepted way of extracting coherent structures from the flow field. A wide range of types of structures have been suggested, but there has been comparatively little work done to determine their role in the flow dynamics, and therefore to discern which structures are useful for more than flow visualization. Here, I review several common types of coherent structures, both Eulerian and Lagrangian, with a focus on two-dimensional turbulence far from boundaries. I also discuss a framework for pinpointing the dynamical role of coherent structures based on spatial localization of the spectral properties of the flow. Future work on coherent structures should focus on defining structures that play clear roles in the turbulence dynamics.
La notion en mécanique des fluides de structures cohérentes, cʼest-à-dire des régions particulières de lʼécoulement corrélées spatialement et temporellement et qui partagent des propriétés similaires, a joué un rôle significatif dans la caractérisation et la modélisation des écoulements turbulents. Pour autant, ces structures ne sont pas considérées comme des outils prédictifs car, notamment, il nʼexiste pas de consensus sur la méthode permettant leur extraction de lʼécoulement. Il a été proposé une gamme étendue de types de structures, mais peu de travail a été fourni visant à caractériser leur rôle dans la dynamique du fluide, cantonnant donc ces structures à une caractérisation visuelle de lʼécoulement. Dans cet article, je me propose de rappeler lʼimportance de quelques unes de ces structures, aussi bien eulériennes que lagrangiennes, avec un intérêt particulier pour la turbulence bidimensionnelle loin des bords. Je discuterai aussi de lʼexistence dʼun cadre permettant de quantifier leur rôle dynamique en me basant sur la localisation spatiale des propriétés spectrales de lʼécoulement. Les études futures des structures cohérentes devront se concentrer à définir les structures qui jouent un rôle clair dans la dynamique de la turbulence.
Mot clés : Structures cohérentes, Turbulence, Mécanique des fluides
Nicholas T. Ouellette 1
@article{CRPHYS_2012__13_9-10_866_0, author = {Nicholas T. Ouellette}, title = {On the dynamical role of coherent structures in turbulence}, journal = {Comptes Rendus. Physique}, pages = {866--877}, publisher = {Elsevier}, volume = {13}, number = {9-10}, year = {2012}, doi = {10.1016/j.crhy.2012.09.006}, language = {en}, }
Nicholas T. Ouellette. On the dynamical role of coherent structures in turbulence. Comptes Rendus. Physique, Volume 13 (2012) no. 9-10, pp. 866-877. doi : 10.1016/j.crhy.2012.09.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.09.006/
[1] Turbulent Flows, Cambridge University Press, Cambridge, England, 2000
[2] Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993), pp. 851-1112
[3] On density effects and large structure in turbulent mixing layers, J. Fluid Mech., Volume 64 (1974), pp. 775-816
[4] Coherent structures and turbulence, J. Fluid Mech., Volume 173 (1986), pp. 303-356
[5] Two-dimensional turbulence: a physicist approach, Phys. Rep., Volume 362 (2002), pp. 1-62
[6] Effects of forcing geometry on two-dimensional weak turbulence, Phys. Rev. E, Volume 86 (2012), p. 036306
[7] Two-dimensional turbulence, Annu. Rev. Fluid Mech., Volume 44 (2012), pp. 427-451
[8] Onset of three-dimensionality in electromagnetically forced thin-layer flows, Phys. Fluids, Volume 23 (2011), p. 045103
[9] Uniform resonant chaotic mixing in fluid flows, Nature, Volume 425 (2003), pp. 376-380
[10] Two-dimensional Navier–Stokes turbulence in bounded domains, Appl. Mech. Rev., Volume 62 (2009), p. 020802
[11] Neutrally buoyant particle dynamics in fluid flows: Comparison of experiments with Lagrangian stochastic models, Phys. Fluids, Volume 23 (2011), p. 093304
[12] Transport of finite-sized particles in chaotic flow, Phys. Rev. Lett., Volume 101 (2008), p. 174504
[13] The “Cheerios” effect, Am. J. Phys., Volume 73 (2005), pp. 817-825
[14] A quantitative study of three-dimensional Lagrangian particle tracking algorithms, Exp. Fluids, Volume 40 (2006), pp. 301-313
[15] Experimental Lagrangian probability density function measurement, Physica D, Volume 193 (2004), pp. 245-251
[16] Coherent structures – reality and myth, Phys. Fluids, Volume 26 (1983), pp. 2816-2850
[17] J.C.R. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, Technical Report CTR-S88, Center for Turbulence Research, 1988.
[18] An objective definition of a vortex, J. Fluid Mech., Volume 525 (2005), pp. 1-26
[19] On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94
[20] Universal distribution of centers and saddles in two-dimensional turbulence, Phys. Rev. Lett., Volume 87 (2001), p. 044501
[21] Particle trapping in three-dimensional fully developed turbulence, Phys. Fluids, Volume 17 (2005), p. 021701
[22] Effects of vortex filaments on the velocity of tracers and heavy particles in turbulence, Phys. Fluids, Volume 18 (2006), p. 081702
[23] Is concentrated vorticity that important?, Eur. J. Mech. B/Fluids, Volume 17 (1998), pp. 421-449
[24] A description of eddying motion and flow patterns using critical-point concepts, Annu. Rev. Fluid Mech., Volume 19 (1987), pp. 125-155
[25] Chaos-enhanced transport in cellular flows, Phil. Trans. R. Soc. A, Volume 338 (1992), pp. 519-532
[26] Dynamical dimension of defects in spatiotemporal chaos, Phys. Rev. Lett., Volume 81 (1998), pp. 4120-4123
[27] A general classification of three-dimensional flow fields, Phys. Fluids A, Volume 2 (1990), pp. 765-777
[28] Curvature fields, topology, and the dynamics of spatiotemporal chaos, Phys. Rev. Lett., Volume 99 (2007), p. 194502
[29] Dynamic topology in spatiotemporal chaos, Phys. Fluids, Volume 20 (2008), p. 064104
[30] Geometry of particle paths in turbulent flows, J. Turbul., Volume 7 (2006), p. 1
[31] Curvature of Lagrangian trajectories in turbulence, Phys. Rev. Lett., Volume 98 (2007), p. 050201
[32] Surface selections and topological constraint evaluations for flow field analyses, Exp. Fluids, Volume 37 (2004), pp. 883-898
[33] Acceleration-based classification and evolution of fluid flow structures in two-dimensional turbulence, Phys. Rev. E, Volume 82 (2010), p. 026312
[34] Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence, Phys. Fluids, Volume 18 (2006), p. 115103
[35] Lagrangian tetrad dynamics and the phenomenology of turbulence, Phys. Fluids, Volume 11 (1999), pp. 2394-2410
[36] Geometry of Lagrangian dispersion in turbulence, Phys. Rev. Lett., Volume 85 (2000), pp. 5324-5327
[37] Scalar turbulence, Nature, Volume 405 (2000), pp. 639-646
[38] The Lagrangian view of energy transfer in turbulent flow, Europhys. Lett., Volume 56 (2001), pp. 379-385
[39] Evolution of geometric structures in intense turbulence, New J. Phys., Volume 10 (2008), p. 013012
[40] Multiparticle dispersion in fully developed turbulence, Phys. Fluids, Volume 17 (2005), p. 111701
[41] The pirouette effect in turbulent flows, Nat. Phys., Volume 7 (2011), pp. 709-712
[42] Scale-dependent statistical geometry in two-dimensional flow, Phys. Rev. Lett., Volume 104 (2010), p. 254501
[43] Evolution of triangles in a two-dimensional turbulent flow, Phys. Rev. E, Volume 64 (2001), p. 056303
[44] Kinematic simulation of turbulent dispersion of triangles, Phys. Rev. E, Volume 68 (2003), p. 026313
[45] Mechanisms driving shape distortion in two-dimensional flow, EPL, Volume 94 (2011), p. 64006
[46] Particle pair diffusion and persistent streamline topology in two-dimensional turbulence, New J. Phys., Volume 6 (2004), p. 65
[47] Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos, Volume 10 (2000), pp. 99-108
[48] Lagrangian coherent structures and mixing in two-dimensional turbulence, Physica D, Volume 147 (2000), pp. 352-370
[49] Distinguished material surfaces and coherent structures in three-dimensional fluid flows, Physica D, Volume 149 (2001), pp. 248-277
[50] Uncovering the Lagrangian skeleton of turbulence, Phys. Rev. Lett., Volume 98 (2007), p. 144502
[51] Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, Volume 212 (2005), pp. 271-304
[52] Experimental measurements of stretching fields in fluid mixing, Phys. Rev. Lett., Volume 88 (2002), p. 254501
[53] Lagrangian analysis of fluid transport in empirical vortex ring flows, Phys. Fluids, Volume 18 (2006), p. 047105
[54] Oceanic mesoscale eddies as revealed by Lagrangian coherent structures, Geophys. Res. Lett., Volume 35 (2008), p. L12603
[55] Top marine predators track Lagrangian coherent structures, Proc. Natl. Acad. Sci. USA, Volume 106 (2008), pp. 8245-8250
[56] Introduction to focus issue: Lagrangian coherent structures, Chaos, Volume 20 (2010), p. 017501
[57] Forecasting sudden changes in environmental pollution patterns, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 4738-4743
[58] A variational theory of hyperbolic Lagrangian coherent structures, Physica D, Volume 240 (2011), pp. 574-598
[59] Computing Lagrangian coherent structures from their variational theory, Chaos, Volume 22 (2012), p. 013128
[60] Rotation and alignment of rods in two-dimensional chaotic flow, Phys. Fluids, Volume 23 (2011), p. 043302
[61] Separating stretching from folding in fluid mixing, Nat. Phys., Volume 7 (2011), pp. 477-480
[62] Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E, Volume 57 (1998), pp. 7192-7205
[63] Detection of Lagrangian coherent structures in three-dimensional turbulence, J. Fluid Mech., Volume 572 (2007), pp. 111-120
[64] Weather Prediction by Numerical Process, Cambridge University Press, Cambridge, England, 1922
[65] Turbulence: the filtering approach, J. Fluid Mech., Volume 238 (1992), pp. 325-336
[66] On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet, J. Fluid Mech., Volume 275 (1994), pp. 83-119
[67] Local energy flux and the refined similarity hypothesis, J. Stat. Phys., Volume 78 (1995), pp. 335-351
[68] Energy and enstrophy transfer in decaying two-dimensional turbulence, Phys. Rev. Lett., Volume 90 (2003), p. 104502
[69] Physical mechanism of the two-dimensional enstrophy cascade, Phys. Rev. Lett., Volume 91 (2003), p. 214501
[70] Physical mechanism of the two-dimensional inverse energy cascade, Phys. Rev. Lett., Volume 96 (2006), p. 084502
[71] Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation, J. Fluid Mech., Volume 619 (2009), pp. 1-44
[72] Spatiotemporal persistence of spectral fluxes in two-dimensional weak turbulence, Phys. Fluids, Volume 23 (2011), p. 115101
Cited by Sources:
Comments - Policy