Comptes Rendus
Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers
Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 221-227.

Wires represent a new class of nanostructures that offer unprecedented freedom in materials design and new physical properties. Amongst the very different growth mechanisms reported in literature, the vapour-phase growth of self-catalyzed wires has the advantages of simplicity and rapidity with a low level of contaminants. The elaborations of semiconducting and metallic wires are usually considered as very distinct fields and no significant analogies have been noticed yet. This paper illustrates significant similarities of the mechanisms involved in the GaN and Cu wire growths that highlight firstly the role of the substrate surface preparation (with the deposition of an intermediate layer on the substrate surface impacting the nucleation seeds) and secondly the role of the different diffusion paths contributing to the one-dimensional growth in particular the influence of the surrounding gas phase and respective diffusion lengths on the substrate surface and wire sidewall. Experimental data describing the evolution of the wire diameter and length as a function of the growth time are quantitatively analyzed to evidence different growth regimes.

Les nanofils représentent une nouvelle classe de matériaux qui offrent des possibilités nouvelles en termes de design et de propriétés physiques. Parmi les différents mécanismes de croissance rapportés dans la littérature, la croissance en phase vapeur de fils auto-catalysés présente lʼavantage dʼêtre simple et rapide, tout en assurant un faible niveau de contamination chimique. Les procédés dʼélaboration des fils de semiconducteurs et de métaux sont en général considérés comme bien distincts et peu dʼanalogies ont été rapportées jusquʼà présent. Cet article illustre des similarités notables entre les mécanismes de croissance de fils de GaN et de Cu, qui mettent en évidence, premièrement, le rôle de la préparation de surface (avec le dépôt dʼune couche intermédiaire sur le substrat qui impacte directement la nucléation des fils) et, deuxièmement, celui des différents chemins de diffusion, qui contribuent à la croissance unidimensionnelle, en particulier lʼinfluence de la phase gazeuse environnante et des longueurs de diffusion sur la surface du substrat et sur les facettes de fils. Les données expérimentales décrivant lʼévolution du diamètre et de la longueur des fils en fonction du temps de croissance sont analysées quantitativement pour mettre en évidence différents régimes de croissance.

Published online:
DOI: 10.1016/j.crhy.2012.10.009
Keywords: Crystalline growth, Wires, Mechanisms, Vapour phase, GaN, Cu
Mot clés : Croissance cristalline, Fils, Mécanismes, Phase vapeur, GaN, Cu

Joël Eymery 1; Xiaojun Chen 1; Christophe Durand 1; Matthias Kolb 2; Gunther Richter 2

1 Équipe mixte CEA–CNRS–UJF “Nanophysique et semiconducteurs”, SP2M, UMR-E CEA/UJF-Grenoble 1, INAC, 38054 Grenoble, France
2 Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
@article{CRPHYS_2013__14_2-3_221_0,
     author = {Jo\"el Eymery and Xiaojun Chen and Christophe Durand and Matthias Kolb and Gunther Richter},
     title = {Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: {GaN} rods versus {Cu} whiskers},
     journal = {Comptes Rendus. Physique},
     pages = {221--227},
     publisher = {Elsevier},
     volume = {14},
     number = {2-3},
     year = {2013},
     doi = {10.1016/j.crhy.2012.10.009},
     language = {en},
}
TY  - JOUR
AU  - Joël Eymery
AU  - Xiaojun Chen
AU  - Christophe Durand
AU  - Matthias Kolb
AU  - Gunther Richter
TI  - Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 221
EP  - 227
VL  - 14
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.10.009
LA  - en
ID  - CRPHYS_2013__14_2-3_221_0
ER  - 
%0 Journal Article
%A Joël Eymery
%A Xiaojun Chen
%A Christophe Durand
%A Matthias Kolb
%A Gunther Richter
%T Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers
%J Comptes Rendus. Physique
%D 2013
%P 221-227
%V 14
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2012.10.009
%G en
%F CRPHYS_2013__14_2-3_221_0
Joël Eymery; Xiaojun Chen; Christophe Durand; Matthias Kolb; Gunther Richter. Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 221-227. doi : 10.1016/j.crhy.2012.10.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.009/

[1] C. Thelander et al. Nanowire one-dimensional electronics, Mater. Today, Volume 9 (2006) no. 10, pp. 28-35

[2] Y. Li; F. Qian; J. Xiang; C.M. Lieber Nanowire electronic and optoelectronic devices, Mater. Today, Volume 9 (2006), pp. 18-27

[3] T.M. Whitney; P.C. Searson; J.S. Jiang; C.L. Chien Fabrication and magnetic properties of arrays of metallic nanowires, Science, Volume 261 (1993) no. 5126, pp. 1316-1319

[4] Y. Wu; J. Xiang; C. Yang; W. Lu; C.M. Lieber Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature, Volume 430 (2004), pp. 61-65

[5] G. Richter; K. Hillerich; D.S. Gianola; R. Moenig; O. Kraft; C.A. Volkert Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition, Nano Lett., Volume 9 (2009) no. 8, pp. 3048-3052

[6] E.I. Givargizov Fundamental aspects of VLS growth, J. Cryst. Growth, Volume 31 (1975), pp. 20-30

[7] V.G. Dubrovskii et al. Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment, Phys. Rev. B, Volume 71 (2005), p. 205325

[8] V. Ruth; J.P. Hirth Kinetics of diffusion-controlled whisker growth, J. Chem. Phys., Volume 41 (1964) no. 10, pp. 3139-3149

[9] T. Akasaka; Y. Kobayashi; S. Ando; N. Kobayashi GaN hexagonal microprisms with smooth vertical facets fabricated by selective metalorganic vapor phase epitaxy, Appl. Phys. Lett., Volume 71 (1997) no. 15, pp. 2196-2198

[10] R. Koester; J.S. Hwang; C. Durand; D. Le Si Dang; J. Eymery Self-assembled growth of catalyst-free GaN wires by MOVPE, Nanotechnology, Volume 21 (2010), p. 015602

[11] F.D. Liu et al. The mechanism for polarity inversion of GaN via a thin AlN layer: Direct experimental evidence, Appl. Phys. Lett., Volume 91 (2007), p. 203115

[12]

Polarity in non-centrosymmetric wurtzite crystal is defined with standard notations: the bond pointing from the Ga cation to the N anion defines the polar axis c labelled [0001], also called Ga-polar orientation.

[13] X.J. Chen; G. Perillat-Merceroz; D. Sam-Giao; C. Durand; J. Eymery Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates, Appl. Phys. Lett., Volume 97 (2010), p. 151909

[14] Q. Sun et al. Understanding non-polar GaN growth through kinetic Wulff plots, J. Appl. Phys., Volume 104 (2008), p. 093523

[15] D. Du; D.J. Srolovitz; M.E. Coltrin; C.C. Mitchell Systematic prediction of kinetically limited crystal growth morphologies, Phys. Rev. Lett., Volume 95 (2005), p. 155503

[16] V. Jindal; F. Shahedipour-Sandivk Theoretical prediction of GaN nanostructure equilibrium and nonequilibrium shapes, J. Appl. Phys., Volume 106 (2009), p. 083115

[17] A.-L. Bavencove et al. Light emitting diodes based on GaN core/shell wires grown by MOVPE on n-type Si substrate, Electron. Lett., Volume 47 (2011) no. 13, p. 765

[18] M.E. Coltrin; C.C. Mitchell Mass transport and kinetic limitations in MOCVD selective-area growth, J. Cryst. Growth, Volume 254 (2003), pp. 35-45

[19] Y. Kato; S. Kitamura; K. Hiramatsu; N. Sawaki Selective growth of wurtzite GaN and AlxGa1xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy, J. Cryst. Growth, Volume 144 (1994) no. 3–4, pp. 133-140

[20] X.J. Chen et al. Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate, J. Cryst. Growth, Volume 322 (2011), pp. 15-22

[21] S.D. Hersee; X.Y. Sun; X. Wang The controlled growth of GaN nanowires, Nano Lett., Volume 6 (2006), pp. 1808-1811

[22] W. Bergbauer et al. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells, Nanotechnology, Volume 21 (2010), p. 305201

[23] Li et al. Polarity and its influence on growth mechanism during MOVPE growth of GaN nanorods, Cryst. Growth Des., Volume 11 (2011), p. 1573

[24] C. Tessarek; S. Christiansen Self-catalyzed, vertically aligned GaN rod-structures by metal–organic vapor phase epitaxy, Phys. Status Sol. C, Volume 9 (2012) no. 3–4, pp. 596-600

[25] X.J. Chen; B. Gayral; D. Sam-Giao; C. Bougerol; C. Durand; J. Eymery Catalyst-free growth of high-optical quality GaN nanowires by metal–organic vapor phase epitaxy, Appl. Phys. Lett., Volume 99 (2011), p. 251910

[26] S.S. Brenner Tensile strength of whiskers, J. Appl. Phys., Volume 27 (1956) no. 12, pp. 1484-1491

[27] M. Schamel et al. The filament growth of metals, Int. J. Mater. Res., Volume 102 (2011) no. 7, pp. 828-836

[28] R.-Q. Zhang; Y. Lifshitz; S.-T. Lee Oxide-assisted growth of semiconducting nanowires, Adv. Mater., Volume 15 (2003) no. 7–8, pp. 635-640

[29] G.B. Stringfellow Organometallic Vapor-Phase Epitaxy: Theory and Practice, Academic Press, London, 1999

[30] D. Moscatelli; C. Cavallotti Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE, J. Phys. Chem. A, Volume 111 (2007) no. 21, pp. 4620-4631

[31] R.P. Parikh; R.A. Adomaitis An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system, J. Cryst. Growth, Volume 286 (2006), pp. 259-278

[32] A. Thon; T.F. Kuech High temperature adduct formation of trimethylgallium and ammonia, Appl. Phys. Lett., Volume 69 (1996) no. 1, pp. 55-57

[33] B. Mandl et al. Growth mechanism of self-catalyzed group III–V nanowires, Nano Lett., Volume 10 (2010), pp. 4443-4449

[34] A. Fontcuberta i Morral et al. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Appl. Phys. Lett., Volume 92 (2008), p. 063112

[35] S.A. Dayeh; E.T. Yu; D. Wang Surface diffusion and substrate–nanowire adatom exchange in InAs nanowire growth, Nano Lett., Volume 9 (2009) no. 5, pp. 1967-1972

[36] R. Koester et al. M-plane core–shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices, Nano Lett., Volume 11 (2011), pp. 4839-4845

[37] G. Jacopin et al. Single-wire light-emitting diodes based on GaN wires containing both polar and non-polar InGaN/GaN quantum wells, Appl. Phys. Express, Volume 5 (2012), p. 014101

[38] A. De Luna Bugallo et al. Single-wire photodetectors based on InGaN/GaN radial quantum wells in GaN wires grown by catalyst-free metal–organic vapor phase epitaxy, Appl. Phys. Lett., Volume 98 (2011), p. 233107

Cited by Sources:

Comments - Policy