Wires represent a new class of nanostructures that offer unprecedented freedom in materials design and new physical properties. Amongst the very different growth mechanisms reported in literature, the vapour-phase growth of self-catalyzed wires has the advantages of simplicity and rapidity with a low level of contaminants. The elaborations of semiconducting and metallic wires are usually considered as very distinct fields and no significant analogies have been noticed yet. This paper illustrates significant similarities of the mechanisms involved in the GaN and Cu wire growths that highlight firstly the role of the substrate surface preparation (with the deposition of an intermediate layer on the substrate surface impacting the nucleation seeds) and secondly the role of the different diffusion paths contributing to the one-dimensional growth in particular the influence of the surrounding gas phase and respective diffusion lengths on the substrate surface and wire sidewall. Experimental data describing the evolution of the wire diameter and length as a function of the growth time are quantitatively analyzed to evidence different growth regimes.
Les nanofils représentent une nouvelle classe de matériaux qui offrent des possibilités nouvelles en termes de design et de propriétés physiques. Parmi les différents mécanismes de croissance rapportés dans la littérature, la croissance en phase vapeur de fils auto-catalysés présente lʼavantage dʼêtre simple et rapide, tout en assurant un faible niveau de contamination chimique. Les procédés dʼélaboration des fils de semiconducteurs et de métaux sont en général considérés comme bien distincts et peu dʼanalogies ont été rapportées jusquʼà présent. Cet article illustre des similarités notables entre les mécanismes de croissance de fils de GaN et de Cu, qui mettent en évidence, premièrement, le rôle de la préparation de surface (avec le dépôt dʼune couche intermédiaire sur le substrat qui impacte directement la nucléation des fils) et, deuxièmement, celui des différents chemins de diffusion, qui contribuent à la croissance unidimensionnelle, en particulier lʼinfluence de la phase gazeuse environnante et des longueurs de diffusion sur la surface du substrat et sur les facettes de fils. Les données expérimentales décrivant lʼévolution du diamètre et de la longueur des fils en fonction du temps de croissance sont analysées quantitativement pour mettre en évidence différents régimes de croissance.
Mot clés : Croissance cristalline, Fils, Mécanismes, Phase vapeur, GaN, Cu
Joël Eymery 1; Xiaojun Chen 1; Christophe Durand 1; Matthias Kolb 2; Gunther Richter 2
@article{CRPHYS_2013__14_2-3_221_0, author = {Jo\"el Eymery and Xiaojun Chen and Christophe Durand and Matthias Kolb and Gunther Richter}, title = {Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: {GaN} rods versus {Cu} whiskers}, journal = {Comptes Rendus. Physique}, pages = {221--227}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.10.009}, language = {en}, }
TY - JOUR AU - Joël Eymery AU - Xiaojun Chen AU - Christophe Durand AU - Matthias Kolb AU - Gunther Richter TI - Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers JO - Comptes Rendus. Physique PY - 2013 SP - 221 EP - 227 VL - 14 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2012.10.009 LA - en ID - CRPHYS_2013__14_2-3_221_0 ER -
%0 Journal Article %A Joël Eymery %A Xiaojun Chen %A Christophe Durand %A Matthias Kolb %A Gunther Richter %T Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers %J Comptes Rendus. Physique %D 2013 %P 221-227 %V 14 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2012.10.009 %G en %F CRPHYS_2013__14_2-3_221_0
Joël Eymery; Xiaojun Chen; Christophe Durand; Matthias Kolb; Gunther Richter. Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 221-227. doi : 10.1016/j.crhy.2012.10.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.009/
[1] et al. Nanowire one-dimensional electronics, Mater. Today, Volume 9 (2006) no. 10, pp. 28-35
[2] Nanowire electronic and optoelectronic devices, Mater. Today, Volume 9 (2006), pp. 18-27
[3] Fabrication and magnetic properties of arrays of metallic nanowires, Science, Volume 261 (1993) no. 5126, pp. 1316-1319
[4] Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures, Nature, Volume 430 (2004), pp. 61-65
[5] Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition, Nano Lett., Volume 9 (2009) no. 8, pp. 3048-3052
[6] Fundamental aspects of VLS growth, J. Cryst. Growth, Volume 31 (1975), pp. 20-30
[7] et al. Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment, Phys. Rev. B, Volume 71 (2005), p. 205325
[8] Kinetics of diffusion-controlled whisker growth, J. Chem. Phys., Volume 41 (1964) no. 10, pp. 3139-3149
[9] GaN hexagonal microprisms with smooth vertical facets fabricated by selective metalorganic vapor phase epitaxy, Appl. Phys. Lett., Volume 71 (1997) no. 15, pp. 2196-2198
[10] Self-assembled growth of catalyst-free GaN wires by MOVPE, Nanotechnology, Volume 21 (2010), p. 015602
[11] et al. The mechanism for polarity inversion of GaN via a thin AlN layer: Direct experimental evidence, Appl. Phys. Lett., Volume 91 (2007), p. 203115
[12]
Polarity in non-centrosymmetric wurtzite crystal is defined with standard notations: the bond pointing from the Ga cation to the N anion defines the polar axis c labelled [0001], also called Ga-polar orientation.
[13] Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates, Appl. Phys. Lett., Volume 97 (2010), p. 151909
[14] et al. Understanding non-polar GaN growth through kinetic Wulff plots, J. Appl. Phys., Volume 104 (2008), p. 093523
[15] Systematic prediction of kinetically limited crystal growth morphologies, Phys. Rev. Lett., Volume 95 (2005), p. 155503
[16] Theoretical prediction of GaN nanostructure equilibrium and nonequilibrium shapes, J. Appl. Phys., Volume 106 (2009), p. 083115
[17] et al. Light emitting diodes based on GaN core/shell wires grown by MOVPE on n-type Si substrate, Electron. Lett., Volume 47 (2011) no. 13, p. 765
[18] Mass transport and kinetic limitations in MOCVD selective-area growth, J. Cryst. Growth, Volume 254 (2003), pp. 35-45
[19] Selective growth of wurtzite GaN and on GaN/sapphire substrates by metalorganic vapor phase epitaxy, J. Cryst. Growth, Volume 144 (1994) no. 3–4, pp. 133-140
[20] et al. Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate, J. Cryst. Growth, Volume 322 (2011), pp. 15-22
[21] The controlled growth of GaN nanowires, Nano Lett., Volume 6 (2006), pp. 1808-1811
[22] et al. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells, Nanotechnology, Volume 21 (2010), p. 305201
[23] et al. Polarity and its influence on growth mechanism during MOVPE growth of GaN nanorods, Cryst. Growth Des., Volume 11 (2011), p. 1573
[24] Self-catalyzed, vertically aligned GaN rod-structures by metal–organic vapor phase epitaxy, Phys. Status Sol. C, Volume 9 (2012) no. 3–4, pp. 596-600
[25] Catalyst-free growth of high-optical quality GaN nanowires by metal–organic vapor phase epitaxy, Appl. Phys. Lett., Volume 99 (2011), p. 251910
[26] Tensile strength of whiskers, J. Appl. Phys., Volume 27 (1956) no. 12, pp. 1484-1491
[27] et al. The filament growth of metals, Int. J. Mater. Res., Volume 102 (2011) no. 7, pp. 828-836
[28] Oxide-assisted growth of semiconducting nanowires, Adv. Mater., Volume 15 (2003) no. 7–8, pp. 635-640
[29] Organometallic Vapor-Phase Epitaxy: Theory and Practice, Academic Press, London, 1999
[30] Theoretical investigation of the gas-phase kinetics active during the GaN MOVPE, J. Phys. Chem. A, Volume 111 (2007) no. 21, pp. 4620-4631
[31] An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system, J. Cryst. Growth, Volume 286 (2006), pp. 259-278
[32] High temperature adduct formation of trimethylgallium and ammonia, Appl. Phys. Lett., Volume 69 (1996) no. 1, pp. 55-57
[33] et al. Growth mechanism of self-catalyzed group III–V nanowires, Nano Lett., Volume 10 (2010), pp. 4443-4449
[34] et al. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Appl. Phys. Lett., Volume 92 (2008), p. 063112
[35] Surface diffusion and substrate–nanowire adatom exchange in InAs nanowire growth, Nano Lett., Volume 9 (2009) no. 5, pp. 1967-1972
[36] et al. M-plane core–shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices, Nano Lett., Volume 11 (2011), pp. 4839-4845
[37] et al. Single-wire light-emitting diodes based on GaN wires containing both polar and non-polar InGaN/GaN quantum wells, Appl. Phys. Express, Volume 5 (2012), p. 014101
[38] et al. Single-wire photodetectors based on InGaN/GaN radial quantum wells in GaN wires grown by catalyst-free metal–organic vapor phase epitaxy, Appl. Phys. Lett., Volume 98 (2011), p. 233107
Cited by Sources:
Comments - Policy