Comptes Rendus
From quantum oscillations to charge order in high-Tc copper oxides in high magnetic fields
[Des oscillations quantiques à un ordre de charge dans des cuprates supraconducteurs à haute-Tc en champ magnétique intense]
Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 39-52.

Cet article constitue une mise à jour reprenant beaucoup dʼéléments dʼun article de Vignolle et al. [C. R. Phys. 12 (2011) 446] publié dans un dossier des C. R. Physique dédié à la supraconductivité. En incluant cet article dans le présent dossier sur la physique en champ magnétique intense nous avons souhaité, en accord avec le Collège éditorial de la revue, offrir un dossier complet mais aussi rendre compte des derniers développements dans lʼétude des supraconducteurs en fort champ.

Nous discutons comment, au cours des dernières années, certaines expériences sous champ magnétique intense ont donné une nouvelle tournure à la compréhension de lʼétat normal des cuprates supraconducteurs dopés en trous. La découverte des oscillations quantiques dans YBa2Cu3Oy sous-dopé et Tl2Ba2CuO6 + δ sur-dopé a démontré lʼexistence dʼune surface de Fermi à travers le diagramme de phase, ce qui était une question controversée depuis plus de vingt ans. Cependant, la différence de fréquence dʼoscillation pour les deux composés a révélé une topologie très différente de leur surface de Fermi. De surcroît, lʼobservation des coefficients Hall et Seebeck négatifs dans les matériaux sous-dopé a montré que la grande surface de Fermi de trou des matériaux sur-dopés a subi une reconstruction dans la limite fort champ magnétique et basse température où les oscillations quantiques ont été observées. Cela a été interprété comme lʼexistence dʼune brisure de symétrie due à un ordre électronique (de spin, de charge, ou de courants orbitaux). La dépendance angulaire des oscillations quantiques a permis de conclure que la reconstruction de la surface de Fermi nʼétait pas la conséquence dʼune onde de densité de spin avec des moments perpendiculaires au champ. Enfin, des mesures de résonance magnétique nucléaire ont révélé que cʼest en fait un ordre de charge, sans ordre de spin, qui est induit dans les plans dʼoxyde de cuivre dès que la supraconductivité est suffisamment affaiblie par le champ magnétique. Ces résultats suggèrent quʼil existe une compétition générique entre la supraconductivité et une onde de densité de charge dans les cuprates supraconducteurs.

This article constitutes an update made of numerous elements from an article by Vignolle et al. [C. R. Phys. 12 (2011) 446] published in the issue of C. R. Physique dedicated to superconductivity. By including this article to the present issue on physics in high magnetic field, we have aimed, in agreement with the editorial board of the review, offering a complete issue and also reporting on the last developments in the study of superconductors in high field.

We review how experiments in very high magnetic fields over the last five years have given a new twist to the understanding of the normal state of hole-doped cuprate superconductors. The discovery of quantum oscillations in underdoped YBa2Cu3Oy and overdoped Tl2Ba2CuO6 + δ has proven the existence of a Fermi surface across the whole phase diagram, which had been a controversial issue for more than twenty years. However, the striking difference in oscillation frequency for the two compounds has revealed a very different Fermi surface topology. The observation of negative Hall and Seebeck coefficients in the underdoped materials has shown that the large hole-like Fermi surface of overdoped materials undergoes a reconstruction in the high field and low temperature limits for which quantum oscillation can be observed. This has been interpreted as evidence for a translational symmetry breaking due to some form of electronic (spin, charge, or orbital current) order. The angular dependence of the quantum oscillations has constrained the source of the Fermi-surface reconstruction to something other than a spin-density wave with moments perpendicular to the field. Finally, nuclear magnetic resonance studies have revealed that it is actually charge order, without spin order, which is induced in the copper oxide planes as soon as superconductivity is sufficiently weakened by the magnetic field. The results suggest that there is a generic competition between superconductivity and a charge-density-wave instability in high Tc cuprates.

Publié le :
DOI : 10.1016/j.crhy.2012.11.001
Keywords: High $ {T}_{c}$ cuprate superconductor, Quantum oscillation, Nuclear magnetic resonance, Magnetotransport
Mot clés : Cuprate supraconducteur haute-$ {T}_{c}$, Oscillation quantique, Résonance magnétique nucléaire, Transport sous champ magnétique
Baptiste Vignolle 1 ; David Vignolles 1 ; Marc-Henri Julien 2 ; Cyril Proust 1

1 Laboratoire national des champs magnétiques intenses (CNRS-INSA-UJF-UPS), 31400 Toulouse, France
2 Laboratoire national des champs magnétiques intenses (CNRS-INSA-UJF-UPS), 38042 Grenoble, France
@article{CRPHYS_2013__14_1_39_0,
     author = {Baptiste Vignolle and David Vignolles and Marc-Henri Julien and Cyril Proust},
     title = {From quantum oscillations to charge order in high-$ {T}_{c}$ copper oxides in high magnetic fields},
     journal = {Comptes Rendus. Physique},
     pages = {39--52},
     publisher = {Elsevier},
     volume = {14},
     number = {1},
     year = {2013},
     doi = {10.1016/j.crhy.2012.11.001},
     language = {en},
}
TY  - JOUR
AU  - Baptiste Vignolle
AU  - David Vignolles
AU  - Marc-Henri Julien
AU  - Cyril Proust
TI  - From quantum oscillations to charge order in high-$ {T}_{c}$ copper oxides in high magnetic fields
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 39
EP  - 52
VL  - 14
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.11.001
LA  - en
ID  - CRPHYS_2013__14_1_39_0
ER  - 
%0 Journal Article
%A Baptiste Vignolle
%A David Vignolles
%A Marc-Henri Julien
%A Cyril Proust
%T From quantum oscillations to charge order in high-$ {T}_{c}$ copper oxides in high magnetic fields
%J Comptes Rendus. Physique
%D 2013
%P 39-52
%V 14
%N 1
%I Elsevier
%R 10.1016/j.crhy.2012.11.001
%G en
%F CRPHYS_2013__14_1_39_0
Baptiste Vignolle; David Vignolles; Marc-Henri Julien; Cyril Proust. From quantum oscillations to charge order in high-$ {T}_{c}$ copper oxides in high magnetic fields. Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 39-52. doi : 10.1016/j.crhy.2012.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.11.001/

[1] Cyril Proust; Etienne Boaknin; R.W. Hill; Louis Taillefer; A.P. Mackenzie Phys. Rev. Lett., 89 (2002), p. 147003

[2] S. Nakamae; K. Behnia; N. Mangkorntong; M. Nohara; H. Takagi; S.J.C. Yates; N.E. Hussey Phys. Rev. B, 68 (2003), p. 100502

[3] A.P. Mackenzie; S.R. Julian; D.C. Sinclair; C.T. Lin Phys. Rev. B, 53 (1996), p. 5848

[4] T. Manako; Y. Kubo; Y. Shimakawa Phys. Rev. B, 46 (1992), p. 11019

[5] M. Abdel-Jawad; J.G. Analytis; L. Balicas; A. Carrington; J.P.H. Charmant; M.M.J. French; N.E. Hussey Phys. Rev. Lett., 99 (2007), p. 107002

[6] R. Daou; N. Doiron-Leyraud; D. LeBoeuf; S.Y. Li; F. Laliberté; O. Cyr-Choinière; Y.J. Jo; L. Balicas; J.-Q. Yan; J.-S. Zhou; J.B. Goodenough; L. Taillefer Nature Phys., 5 (2009), p. 31

[7] R.A. Cooper; Y. Wang; B. Vignolle; O.J. Lipscombe; S.M. Hayden; Y. Tanabe; T. Adachi; Y. Koike; M. Nohara; H. Takagi; C. Proust; N.E. Hussey Science, 323 (2009), p. 603

[8] W.W. Warren; R.E. Walstedt; G.F. Brennert; R.J. Cava; R. Tycko; R.F. Bell; G. Dabbagh Phys. Rev. Lett., 62 (1989), p. 1193

[9] H. Alloul; T. Ohno; P. Mendels Phys. Rev. Lett., 63 (1989), p. 1700

[10] H. Yasuoka; T. Imai; T. Shimizu Strong Correlation and Superconductivity, Springer Series in Solid State Sciences, vol. 89, 1989, p. 254

[11] M.R. Norman; H. Ding; M. Randeria; J.C. Campuzano; T. Yokoya; T. Takeuchi; T. Takahashi; T. Mochiku; K. Kadowaki; P. Guptasarma; D.G. Hinks Nature, 392 (1998), p. 157

[12] B. Fauqué; Y. Sidis; V. Hinkov; S. Pailhès; C.T. Lin; X. Chaud; P. Bourges Phys. Rev. Lett., 96 (2006), p. 197001

[13] Y. Li; V. Balédent; N. Barisic; Y. Cho; B. Fauqué; Y. Sidis; G. Yu; X. Zhao; P. Bourges; M. Greven Nature, 455 (2008), p. 372

[14] S. De Almeida-Didry; Y. Sidis; V. Balédent; F. Giovannelli; I. Monot-Laffez; P. Bourges Phys. Rev. B, 86 (2012), p. 020504

[15] Jing Xia; Elizabeth Schemm; G. Deutscher; S.A. Kivelson; D.A. Bonn; W.N. Hardy; R. Liang; W. Siemons; G. Koster; M.M. Fejer; A. Kapitulnik Phys. Rev. Lett., 100 (2008), p. 127002

[16] A. Shekhter; A. Migliori; J.B. Betts; F.F. Balakirev; R.D. McDonald; S.C. Riggs; B.J. Ramshaw; R. Liang; W.N. Hardy; D.A. Bonn, 2012 http://arXiv.org/abs/1208.5810 (preprint)

[17] R. Daou; J. Chang; D. LeBoeuf; O. Cyr-Choinière; F. Laliberté; N. Doiron-Leyraud; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; L. Taillefer Nature, 463 (2010), p. 519

[18] M.J. Lawler; K. Fujita; J. Lee; A.R. Schmidt; Y. Kohsaka; C.K. Kim; H. Eisaki; S. Uchida; J.C. Davis; J.P. Sethna; E.-A. Kim Nature, 466 (2010), p. 347

[19] M.R. Norman; D. Pines; C. Kallin Adv. Phys., 54 (2005), p. 715

[20] P.W. Anderson Science, 235 (1987), p. 1196

[21] V.J. Emery; S.A. Kivelson Nature, 374 (1995), p. 434

[22] A.V. Chubukov; D.K. Morr Phys. Rep., 288 (1997), p. 355

[23] E.G. Moon; S. Sachdev Phys. Rev. B, 80 (2009), p. 035117

[24] S.A. Kivelson; I.P. Bindloss; E. Fradkin; V. Oganesyan; J.M. Tranquada; A. Kapitulnik; C. Howald Rev. Mod. Phys., 75 (2003), p. 1201

[25] M. Vojta Adv. Phys., 58 (2009), p. 699

[26] S. Chakravarty; R.B. Laughlin; D.K. Morr; C. Nayak Phys. Rev. B, 63 (2001), p. 094503

[27] C.M. Varma Phys. Rev. B, 55 (1997), p. 14554

[28] D. Shoenberg Magnetic Oscillations in Metals, Cambridge Univ. Press, Cambridge, 1984

[29] W.J. de Haas; P.M. van Alphen Proc. Sect. Sci. K. Ned. Akad. Wet., 33 (1930), p. 1106

[30] L. Shubnikov; W.Y. de Haas Comm. Phys. Lab. Univ. Leiden (1930) (207a, 207c, 207d, 210a)

[31] I.M. Lifshitz; A.M. Kosevich Zh. Eksp. Teor. Fiz., 29 (1955), p. 730

[32] F.E. Richards Phys. Rev. B, 8 (1973), p. 2552

[33] B.J. Ramshaw; B. Vignolle; J. Day; R. Liang; W.N. Hardy; Cyril Proust; D.A. Bonn Nature Phys., 7 (2011), p. 234

[34] P. Frings; J. Billette; J. Béard; O. Portugall; F. Lecouturier; G.L.J.A. Rikken IEEE Trans. Appl. Supercond., 18 (2008), p. 592

[35] J. Béard; J. Billette; M. Suleiman; P. Frings; W. Knafo; G. Scheerer; F. Duc; D. Vignolles; M. Nardone; A. Zitouni; P. Delescluse; J.-M. Lagarrigue; F. Giquel; B. Griffe; N. Bruyant; J.-P. Nicolin; G.L.J.A. Rikken; R.B. Lyubovskii; G.V. Shilov; E.I. Zhilyaeva; R.N. Lyubovskaya; A. Audouard Eur. Phys. J. Appl. Phys., 59 (2012), p. 30201

[36] N.E. Hussey; M. Abdel-Jawad; A. Carrington; A.P. Mackenzie; L. Balicas Nature, 425 (2003), p. 814

[37] M. Plate; J.D.F. Mottershead; I.S. Elfimov; D.C. Peets; Ruixing Liang; D.A. Bonn; W.N. Hardy; S. Chiuzbaian; M. Falub; M. Shi; L. Patthey; A. Damascelli Phys. Rev. Lett., 95 (2005), p. 077001

[38] D.J. Singh; W.E. Pickett Physica C, 203 (1992), p. 193

[39] B. Vignolle; A. Carrington; R.A. Cooper; M.M.J. French; A.P. Mackenzie; C. Jaudet; D. Vignolles; C. Proust; N.E. Hussey Nature, 455 (2008), p. 952

[40] A.F. Bangura; P.M.C. Rourke; T.M. Benseman; M. Matusiak; J.R. Cooper; N.E. Hussey; A. Carrington Phys. Rev. B, 82 (2010), p. 140501(R)

[41] P.M.C. Rourke; A.F. Bangura; T.M. Benseman; M. Matusiak; J.R. Cooper; A. Carrington; N.E. Hussey New J. Phys., 12 (2010), p. 105009

[42] J.W. Loram; K.A. Mirza; J.M. Wade; J.R. Cooper; W.Y. Liang Physica C, 235 (1994), p. 134

[43] Nicolas Doiron-Leyraud; Cyril Proust; David LeBoeuf; Julien Levallois; Jean-Baptiste Bonnemaison; Ruixing Liang; D.A. Bonn; W.N. Hardy; Louis Taillefer Nature, 447 (2007), p. 565

[44] A.F. Bangura; J.D. Fletcher; A. Carrington; J. Levallois; M. Nardone; B. Vignolle; P.J. Heard; N. Doiron-Leyraud; D. LeBoeuf; L. Taillefer; S. Adachi; C. Proust; N.E. Hussey Phys. Rev. Lett., 100 (2008), p. 047004

[45] C. Jaudet; J. Levallois; A. Audouard; D. Vignolles; B. Vignolle; R. Liang; D.A. Bonn; W.N. Hardy; N.E. Hussey; L. Taillefer; C. Proust Physica B, 404 (2009), p. 354

[46] Cyril Jaudet; David Vignolles; Alain Audouard; Julien Levallois; D. LeBoeuf; Nicolas Doiron-Leyraud; B. Vignolle; M. Nardone; A. Zitouni; Ruixing Liang; D.A. Bonn; W.N. Hardy; Louis Taillefer; Cyril Proust Phys. Rev. Lett., 100 (2008), p. 187005

[47] E.A. Yelland; J. Singleton; C.H. Mielke; N. Harrison; F.F. Balakirev; B. Dabrowski; J.R. Cooper Phys. Rev. Lett., 100 (2008), p. 047003

[48] D. LeBoeuf; N. Doiron-Leyraud; J. Levallois; R. Daou; J.-B. Bonnemaison; N.E. Hussey; L. Balicas; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; S. Adachi; C. Proust; L. Taillefer Nature, 450 (2007), p. 533

[49] David LeBoeuf; Nicolas Doiron-Leyraud; B. Vignolle; Mike Sutherland; B.J. Ramshaw; J. Levallois; R. Daou; Francis Laliberté; Olivier Cyr-Choinière; Johan Chang; Y.J. Jo; L. Balicas; Ruixing Liang; D.A. Bonn; W.N. Hardy; Cyril Proust; Louis Taillefer Phys. Rev. B, 83 (2011), p. 054506

[50] J. Chang; R. Daou; C. Proust; D. LeBoeuf; N. Doiron-Leyraud; F. Laliberté; B. Pingault; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; H. Takagi; A.B. Antunes; I. Sheikin; K. Behnia; L. Taillefer Phys. Rev. Lett., 104 (2010), p. 057005

[51] T. Ando J. Phys. Soc. Jpn., 37 (1974), p. 1233

[52] F. Laliberté; J. Chang; N. Doiron-Leyraud; E. Hassinger; R. Daou; M. Rondeau; B.J. Ramshaw; R. Liang; D.A. Bonn; W.N. Hardy; S. Pyon; T. Takayama; H. Takagi; I. Sheikin; L. Malone; C. Proust; K. Behnia; Louis Taillefer Nat. Commun., 2 (2011), p. 432

[53] S.E. Sebastian; N. Harrison; E. Palm; T.P. Murphy; C.H. Mielke; R. Liang; D.A. Bonn; W.N. Hardy; G.G. Lonzarich Proc. Natl. Acad. Sci. USA, 107 (2010), p. 6175

[54] S. Sanna; G. Allodi; G. Concas; A.D. Hillier; R. De Renzi Phys. Rev. Lett., 93 (2004), p. 207001

[55] F. Coneri; S. Sanna; K. Zheng; J. Lord; R. De Renzi Phys. Rev. B, 81 (2010), p. 104507

[56] D. Haug; V. Hinkov; Y. Sidis; P. Bourges; N.B. Christensen; A. Ivanov; T. Keller; C.T. Lin; B. Keimer New J. Phys., 12 (2010), p. 105006

[57] A. Carrington; E.A. Yelland Phys. Rev. B, 76 (2007), p. 140508

[58] Jie Lin; A.J. Millis Phys. Rev. B, 72 (2005), p. 214506

[59] A.J. Millis; M.R. Norman Phys. Rev. B, 76 (2007), p. 220503

[60] K.-Y. Yang; T.M. Rice; F.-C. Zhang Phys. Rev. B, 73 (2006), p. 174501

[61] P.A. Lee Rep. Prog. Phys., 71 (2008), p. 012501

[62] T.D. Stanescu; G. Kotliar Phys. Rev. B, 74 (2006), p. 125110

[63] N. Harrison; R.D. McDonald; J. Singleton Phys. Rev. Lett., 99 (2007), p. 206406

[64] S. Chakravarty; C. Nayak; S. Tewari Phys. Rev. B, 68 (2003), p. 100504

[65] S.E. Sebastian; N. Harrison; E. Palm; T.P. Murphy; C.H. Mielke; R. Liang; D.A. Bonn; W.N. Hardy; G.G. Lonzarich Nature, 454 (2008), p. 200

[66] S. Chakravarty; H.-Y. Kee Proc. Natl. Acad. Sci., 105 (2008), p. 8835

[67] J. Lin; A.J. Millis Phys. Rev. B, 78 (2008), p. 115108

[68] H. Yao; D.-H. Lee; S.A. Kivelson Phys. Rev. B, 84 (2011), p. 012507

[69] S.E. Sebastian; N. Harrison; R. Liang; D.A. Bonn; W.N. Hardy; C.H. Mielke; G.G. Lonzarich Phys. Rev. Lett., 108 (2012), p. 196403

[70] S.C. Riggs; O. Vafek; J.B. Kemper; J.B. Betts; A. Migliori; F.F. Balakirev; W.N. Hardy; R. Liang; D.A. Bonn; G.S. Boebinger Nature Phys., 7 (2011), p. 332

[71] T. Wu; H. Mayaffre; S. Krämer; M. Horvatić; C. Berthier; W.N. Hardy; R. Liang; D.A. Bonn; M.-H. Julien Nature, 477 (2011), p. 191

[72] C.V. Parker; P. Aynajian; E.H. da Silva Neto; A. Pushp; S. Ono; J. Wen; Z. Xu; G. Gu; A. Yazdani Nature, 468 (2010), p. 677

[73] J. Chang; E. Blackburn; A.T. Holmes; N.B. Christensen; J. Larsen; J. Mesot; Ruixing Liang; D.A. Bonn; W.N. Hardy; A. Watenphul; M.v. Zimmermann; E.M. Forgan; S.M. Hayden Nature Phys., 8 (2012), p. 871

[74] G. Ghiringhelli; M. Le Tacon; M. Minola; S. Blanco-Canosa; C. Mazzoli; N.B. Brookes; G.M. De Luca; A. Frano; D.G. Hawthorn; F. He; T. Loew; M. Moretti Sala; D.C. Peets; M. Salluzzo; E. Schierle; R. Sutarto; G.A. Sawatzky; E. Weschke; B. Keimer; L. Braicovich Science, 337 (2012), p. 821

[75] A.J. Achkar; R. Sutarto; X. Mao; F. He; A. Frano; S. Blanco-Canosa; M. Le Tacon; G. Ghiringhelli; L. Braicovich; M. Minola; M. Moretti Sala; C. Mazzoli; Ruixing Liang; D.A. Bonn; W.N. Hardy; B. Keimer; G.A. Sawatzky; D.G. Hawthorn Phys. Rev. Lett., 109 (2012), p. 167001

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Quantum oscillations and the Fermi surface of high-temperature cuprate superconductors

Baptiste Vignolle; David Vignolles; David LeBoeuf; ...

C. R. Phys (2011)


Electronic Raman scattering in copper oxide superconductors: Understanding the phase diagram

Alain Sacuto; Yann Gallais; Maximilien Cazayous; ...

C. R. Phys (2011)


Interface enhanced superconductivity in FeSe/SrTiO 3 and the hidden nature

Sha Han; Can-Li Song; Xu-Cun Ma; ...

C. R. Phys (2021)