Comptes Rendus
State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”
[Etat de lʼart et développements au « Laboratoire national des champs magnétiques intenses »]
Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 2-14.

Le Laboratoire national des champs magnétiques intenses (LNCMI) est issu de la fusion du Laboratoire des champs magnétiques intenses de Grenoble spécialisé dans la production de champs magnétiques continus et du Laboratoire national des champs pulsés de Toulouse spécialisé dans la production de champs magnétiques pulsés. Le LNCMI accueille une large communauté internationale de chercheurs pour la réalisation de projets scientifiques ou technologiques nécessitant lʼutilisation de champs magnétiques intenses. Des champs magnétiques de 35 T en continu, 80 T en pulsé et 170 T à lʼaide bobine explosive ont ainsi été développés au laboratoire et mis à disposition des chercheurs. Nous présentons dans cet article lʼétat de lʼart et les perspectives de développements en situant le laboratoire vis-à-vis dʼune compétition internationale de plus en plus acharnée.

The “Laboratoire National des Champs Magnétiques Intenses” (LNCMI) is the result of the merger of the “Laboratoire des Champs Magnétiques Intenses” in Grenoble specialised in the generation of DC magnetic fields and the “Laboratoire National des Champs Pulsés” in Toulouse specialised in the generation of pulsed magnet fields. DC fields of up to 35 T, pulsed fields up to 80 T and single-shot pulsed fields up to 170 T are provided to an international community of users. In the present paper we present the current state of our installations and the developments which are pursued in the context of an increasing international competition.

Publié le :
DOI : 10.1016/j.crhy.2012.11.002
Keywords: High field magnet, Steady field magnet, Pulsed field magnet, High magnetic field
Mot clés : Aimant pour champs intenses, Aimant pour champs pulsés, Aimant pour champs continus, Champ magnétique intense
François Debray 1 ; Paul Frings 1

1 Laboratoire national des champs magnétiques intenses (CNRS-INSA-UJF-UPS), 143, avenue de Rangueil, 31400 Toulouse, France
@article{CRPHYS_2013__14_1_2_0,
     author = {Fran\c{c}ois Debray and Paul Frings},
     title = {State of the art and developments of high field magnets at the {{\textquotedblleft}Laboratoire} {National} des {Champs} {Magn\'etiques} {Intenses{\textquotedblright}}},
     journal = {Comptes Rendus. Physique},
     pages = {2--14},
     publisher = {Elsevier},
     volume = {14},
     number = {1},
     year = {2013},
     doi = {10.1016/j.crhy.2012.11.002},
     language = {en},
}
TY  - JOUR
AU  - François Debray
AU  - Paul Frings
TI  - State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 2
EP  - 14
VL  - 14
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.11.002
LA  - en
ID  - CRPHYS_2013__14_1_2_0
ER  - 
%0 Journal Article
%A François Debray
%A Paul Frings
%T State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”
%J Comptes Rendus. Physique
%D 2013
%P 2-14
%V 14
%N 1
%I Elsevier
%R 10.1016/j.crhy.2012.11.002
%G en
%F CRPHYS_2013__14_1_2_0
François Debray; Paul Frings. State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”. Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 2-14. doi : 10.1016/j.crhy.2012.11.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.11.002/

[1] B.J. Gao; H.-J. Schneider-Muntau; Y.M. Eyssa; M.D. Bird Design of a poly-Bitter magnet at the NHMFL, IEEE Trans. Magn., Volume 32 (1996) no. 4, pp. 2503-2506

[2] Salomon Azkenazy Series expansion for At(0,r) and Bz(0,r), Physica B, Volume 177 (1992), pp. 36-40

[3] R. Gersdorf; F.A. Muller; L.W. Roeland Design of high field magnet coils for long pulses, Rev. Sci. Instrum., Volume 36 (1965), pp. 1100-1109

[4] L. van Bockstal; G. Heremans; F. Herlach Pulsed magnetic fields in the 50–70 Tesla range with layer by layer reinforced copper coils, Meas. Sci. Technol. (1991), pp. 1159-1164

[5] C. Trophime; K. Egorov; F. Debray; W. Joss; G. Aubert Magnet calculations at the Grenoble High Magnetic Field Laboratory, IEEE Trans. Appl. Supercond., Volume 12 (2002) no. 1, pp. 1483-1487

[6] H.-J. Schneider-Muntau, P. Rub, in: Colloques Int. “Physique sous Champs Magnétiques Intenses”, Grenoble, 1974, p. 161.

[7] O. Portugall; N. Puhlmann; H.U. Müller; M. Barczewski; I. Stolpe; M. von Ortenberg Megagauss magnetic field in single-turn coils: new scientific experiments, J. Phys. D: Appl. Phys., Volume 32 (1999), pp. 2354-2366

[8] Harry Jones; Paul H. Frings; Michael von Ortenberg; Alex Lagutin; Luc Van Bockstal; Oliver Portugall; Fritz Herlach First experiments in fields above 75 T in the European “coilin–coilex” magnet, Physica B, Volume 346–347 (2004), pp. 553-560

[9] J.B. Schillig; H.J. Boenig; J.D. Rogers; J.R. Sims Design of a 400 MW power supply for a 60 T pulsed magnet, IEEE Trans. Magn., Volume 30 ( July 1994 ) no. 4, pp. 1770-1773

[10] H. Li; H.F. Ding; T. Peng; H.X. Xiao; C.X. Jiang; Y. Pan; L. Li Design of a 60 T quasi-continuous magnet with a hybrid capacitor/rectifier power supply, J. Low Temp. Phys. (2012) | DOI

[11] T.H. Ding; Y.L. Liang; J.X. Tang; X. Chen; X.Y. Chen; Y. Pan; L. Li The design and tests of battery power supply system for pulsed flat-top magnets in WHMFC, J. Low Temp. Phys. ( 9 November 2012 ), pp. 1-7 | DOI

[12] P. Kapitza Further developments of the method of obtaining strong magnetic fields, Proc. Roy. Soc. A, Volume 115 (1927), p. 658

[13] Hongfa Ding; Weiwei Liu; Xianzhong Duan; Liang Li; Fritz Herlach Design and analysis of a combined power supply for high-field quasi-continuous magnets, IEEE Trans. Appl. Supercond., Volume 22 ( June 2012 ) no. 3, p. 5400904

[14] ftp://ftp.pppl.gov/pub/neumeyer/Pulsed_Power_Conf/data/papers/1991/1991_161.PDF.

[15] G. Aubert; L. van Bockstal; E. Fernandez; W. Joss; V. Kuchinski; R. Kurtz; N. Mikhailov; P. Sala IEEE Trans. Appl. Supercond., 12 (2002) no. 1, pp. 703-706

[16] R. Grössinger; M. Schönhart; M. Kriegisch; M. Haas; H. Sassik High field facilities at TU Vienna, J. Low Temp. Phys., Volume 159 (2010) no. 1–2, pp. 394-401

[17] R.J. Weggel; C.K. Holmes; D. Hale The monohelix: (1) five years of operation at the FBNML and (2) finite element stress analysis, IEEE Trans. Magn., Volume 28 (1992) no. 1, pp. 501-504

[18] P. Frings; H. Witte; H. Jones; J. Béard; T. Hermansdoerfer Rapid cooling methods for pulsed magnets, IEEE Trans. Appl. Supercond., Volume 18 (2008), pp. 612-615

[19] K. Spencer; F. Lecouturier; L. Thilly; J.D. Embury Established and emerging materials for use as high-field magnet conductors, Adv. Eng. Mater., Volume 6 (2004) no. 5, pp. 290-297

[20] H. Jones; F. Herlach; J.A. Lee; H.M. Whitworth; A.G. Day; D.J. Jeffrey; D. Dew-Hughes; G. Sherratt 50 tesla pulsed magnets using a copper conductor externally reinforced with stainless steel, IEEE Trans. Magn., Volume 24 (1988), pp. 1055-1058

[21] V. Vidal; L. Thilly; F. Lecouturier; P.-O. Renault Cu nanowhiskers embedded in Nb nanotubes inside a multiscale Cu matrix: The way to reach extreme mechanical properties in high strength conductors, Scr. Mater., Volume 57 (2007) no. 3, pp. 245-248

[22] V. Pantsyrny; A. Shikov; N. Khlebova; V. Drobishev; N. Kozlenkova; M. Polikarpova; N. Belyakov; O. Kukina; V. Dmitriev The nanostructured high strength high conductivity Cu matrix composites with different BCC metals strengthening filaments, IEEE Trans. Appl. Supercond., Volume 20 ( June 2010 ) no. 3

[23] V.I. Pantsyrny; A.K. Shikov; V.E. Vorobieva; N.E. Khlebova; N.I. Kozlenkova; V.A. Drobishev; I.I. Potapenko; N.A. Beliakov; M.V. Polikarpova High strength, high conductivity microcomposite Cu–Nb wires with cross sections in the range of 0.01–100 mm2, IEEE Trans. Appl. Supercond., Volume 18 ( June 2008 ) no. 2, pp. 616-619

[24] T. Hirota; A. Imai; T. Kumano; M. Ichihara; Y. Sakai; K. Inoue; H. Maeda Development of CuAg alloys conductor for high field magnet, IEEE Trans. Magn., Volume 30 ( July 1994 ) no. 4, pp. 1891-1894

[25] F. Herlach; R. Bogaerts; I. Deckers; G. Heremans; L. Li; G. Pitsi; J. Vanacken; L. Van Bockstal; A. Van Esch The K.U. Leuven pulsed high magnetic field facility, Physica B, Volume 201 (1994), pp. 542-545

[26] T. Peng; Q.Q. Sun; X. Zhan; Q. Xu; F. Herlach; H.X. Xiao; Y. Pan; L. Li Design and performance of the first dual coil magnet at the WHMFC, J. Low Temp. Phys. (2012) | DOI

[27] S. Zherlitsyn; B. Wustmann; T. Herrmannsdoerfer; J. Wosnitza Magnet-technology development at the Dresden High Magnetic Field Laboratory, J. Low Temp. Phys. (2012) | DOI

[28] James R. Sims; Dwight G. Rickel; Charles A. Swenson; Josef B. Schillig; Gretchen W. Ellis; Curtt N. Ammerman Assembly, commissioning and operation of the NHMFL 100 Tesla multi-pulse magnet system, IEEE Trans. Appl. Supercond., Volume 18 ( June 2008 ) no. 2, pp. 587-591

[29] J. Béard, J. Billette, M. Suleiman, P. Frings, W. Knafo, G. Scheerer, F. Duc, D. Vignolles, M. Nardone, A. Zitouni, P. Delescluse, J.-M. Lagarrigue, F. Giquel, B. Griffe, N. Bruyant, J.-P. Nicolin, G.L.J.A. Rikken, R.B. Lyubovskii, G.V. Shilov, E.I. Zhilyaeva, R.N. Lyubovskaya, A. Audouard, High frequency magnetic oscillations of the organic metal θ(ET)4ZnBr4(C6H4Cl2) in pulsed magnetic field of up to 81 T, Eur. Phys. J. Appl. Phys., . | DOI

[30] K. Kindo New pulsed-magnets for 100 T, long-pulse and diffraction measurements, J. Phys.: Conf. Ser., Volume 51 (2006), p. 522

[31] R. Battesti; B. Pinto da Souza; S. Batut; C. Robilliard; G. Bailly; C. Michel; M. Nardone; L. Pinard; O. Portugall; G. Trénec; J.-M. Mackowski; G.L.J.A. Rikken; J. Vigué; C. Rizzo The BMV experiment: a novel apparatus to study the propagation of light in a transverse magnetic field, Eur. Phys. J. D, Volume 46 (2008), pp. 323-333

[32] P. Berceau et al. Magnetic linear birefringence measurements using pulsed fields, Phys. Rev. A, Volume 85 (2012), p. 013837

[33] L. Latrasse; M. Marie-Jeanne; T. Lamy; T. Thuillier; J. Giraud; C. Fourel; C. Trophime; F. Debray; P. Sala; J. Dumas SEISM: a 60 GHz cusp electron cyclotron resonance ion source, The 13th International Conference on Ion Sources (ICISʼ09), US (2009) (Rev. Sci. Instrum.), Volume 81 (2010), p. 02B314

[34] F. Debray; J. Dumas; S. Labbé-Lavigne; R. Pfister; C. Trophime; N. Vidal; F. Wilhelm; M. Enderle Design study of high field resistive magnets for diffraction experiments, IEEE Trans. Appl. Supercond., Volume 20 (2010), pp. 664-667

[35] M. Marie-Jeanne, J. Angot, P. Balint, C. Fourel, G. Freche, J. Giraud, J. Jacob, T. Lamy, L. Latrasse, P. Sole, P. Sortais, T. Thuillier, F. Debray, C. Trophime, S. Veys, C. Daversin, V. Zorin, I. Izotov, V. Skalyga, in: Proceedings of ECRIS 2012, Sydney, Australia, September 2012, pp. 25–28, http://www.jacow.org/ (WEZO01).

[36] P. Frings; J. Vanacken; C. Detlefs; F. Duc; J.E. Lorenzo; M. Nardone; J. Billette; A. Zitouni; W. Bras; G.L.J.A. Rikken Synchrotron x-ray powder diffraction studies in pulsed magnetic fields, Rev. Sci. Instrum., Volume 77 (2006), p. 063903

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Beyond 100 Tesla: Scientific experiments using single-turn coils

Oliver Portugall; Pierre Yves Solane; Paulina Plochocka; ...

C. R. Phys (2013)


Quantum vacuum magneto-optics

Rémy Battesti; Paul Berceau; Mathilde Fouché; ...

C. R. Phys (2013)


Resonance THz spectroscopy in high magnetic fields

Anne-Laure Barra; Michel Goiran; Roberta Sessoli; ...

C. R. Phys (2013)