[Etat de lʼart et développements au « Laboratoire national des champs magnétiques intenses »]
Le Laboratoire national des champs magnétiques intenses (LNCMI) est issu de la fusion du Laboratoire des champs magnétiques intenses de Grenoble spécialisé dans la production de champs magnétiques continus et du Laboratoire national des champs pulsés de Toulouse spécialisé dans la production de champs magnétiques pulsés. Le LNCMI accueille une large communauté internationale de chercheurs pour la réalisation de projets scientifiques ou technologiques nécessitant lʼutilisation de champs magnétiques intenses. Des champs magnétiques de 35 T en continu, 80 T en pulsé et 170 T à lʼaide bobine explosive ont ainsi été développés au laboratoire et mis à disposition des chercheurs. Nous présentons dans cet article lʼétat de lʼart et les perspectives de développements en situant le laboratoire vis-à-vis dʼune compétition internationale de plus en plus acharnée.
The “Laboratoire National des Champs Magnétiques Intenses” (LNCMI) is the result of the merger of the “Laboratoire des Champs Magnétiques Intenses” in Grenoble specialised in the generation of DC magnetic fields and the “Laboratoire National des Champs Pulsés” in Toulouse specialised in the generation of pulsed magnet fields. DC fields of up to 35 T, pulsed fields up to 80 T and single-shot pulsed fields up to 170 T are provided to an international community of users. In the present paper we present the current state of our installations and the developments which are pursued in the context of an increasing international competition.
Mot clés : Aimant pour champs intenses, Aimant pour champs pulsés, Aimant pour champs continus, Champ magnétique intense
François Debray 1 ; Paul Frings 1
@article{CRPHYS_2013__14_1_2_0, author = {Fran\c{c}ois Debray and Paul Frings}, title = {State of the art and developments of high field magnets at the {{\textquotedblleft}Laboratoire} {National} des {Champs} {Magn\'etiques} {Intenses{\textquotedblright}}}, journal = {Comptes Rendus. Physique}, pages = {2--14}, publisher = {Elsevier}, volume = {14}, number = {1}, year = {2013}, doi = {10.1016/j.crhy.2012.11.002}, language = {en}, }
TY - JOUR AU - François Debray AU - Paul Frings TI - State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses” JO - Comptes Rendus. Physique PY - 2013 SP - 2 EP - 14 VL - 14 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2012.11.002 LA - en ID - CRPHYS_2013__14_1_2_0 ER -
%0 Journal Article %A François Debray %A Paul Frings %T State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses” %J Comptes Rendus. Physique %D 2013 %P 2-14 %V 14 %N 1 %I Elsevier %R 10.1016/j.crhy.2012.11.002 %G en %F CRPHYS_2013__14_1_2_0
François Debray; Paul Frings. State of the art and developments of high field magnets at the “Laboratoire National des Champs Magnétiques Intenses”. Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 2-14. doi : 10.1016/j.crhy.2012.11.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.11.002/
[1] Design of a poly-Bitter magnet at the NHMFL, IEEE Trans. Magn., Volume 32 (1996) no. 4, pp. 2503-2506
[2] Series expansion for and , Physica B, Volume 177 (1992), pp. 36-40
[3] Design of high field magnet coils for long pulses, Rev. Sci. Instrum., Volume 36 (1965), pp. 1100-1109
[4] Pulsed magnetic fields in the 50–70 Tesla range with layer by layer reinforced copper coils, Meas. Sci. Technol. (1991), pp. 1159-1164
[5] Magnet calculations at the Grenoble High Magnetic Field Laboratory, IEEE Trans. Appl. Supercond., Volume 12 (2002) no. 1, pp. 1483-1487
[6] H.-J. Schneider-Muntau, P. Rub, in: Colloques Int. “Physique sous Champs Magnétiques Intenses”, Grenoble, 1974, p. 161.
[7] Megagauss magnetic field in single-turn coils: new scientific experiments, J. Phys. D: Appl. Phys., Volume 32 (1999), pp. 2354-2366
[8] First experiments in fields above 75 T in the European “coilin–coilex” magnet, Physica B, Volume 346–347 (2004), pp. 553-560
[9] Design of a 400 MW power supply for a 60 T pulsed magnet, IEEE Trans. Magn., Volume 30 ( July 1994 ) no. 4, pp. 1770-1773
[10] Design of a 60 T quasi-continuous magnet with a hybrid capacitor/rectifier power supply, J. Low Temp. Phys. (2012) | DOI
[11] The design and tests of battery power supply system for pulsed flat-top magnets in WHMFC, J. Low Temp. Phys. ( 9 November 2012 ), pp. 1-7 | DOI
[12] Further developments of the method of obtaining strong magnetic fields, Proc. Roy. Soc. A, Volume 115 (1927), p. 658
[13] Design and analysis of a combined power supply for high-field quasi-continuous magnets, IEEE Trans. Appl. Supercond., Volume 22 ( June 2012 ) no. 3, p. 5400904
[14] ftp://ftp.pppl.gov/pub/neumeyer/Pulsed_Power_Conf/data/papers/1991/1991_161.PDF.
[15] IEEE Trans. Appl. Supercond., 12 (2002) no. 1, pp. 703-706
[16] High field facilities at TU Vienna, J. Low Temp. Phys., Volume 159 (2010) no. 1–2, pp. 394-401
[17] The monohelix: (1) five years of operation at the FBNML and (2) finite element stress analysis, IEEE Trans. Magn., Volume 28 (1992) no. 1, pp. 501-504
[18] Rapid cooling methods for pulsed magnets, IEEE Trans. Appl. Supercond., Volume 18 (2008), pp. 612-615
[19] Established and emerging materials for use as high-field magnet conductors, Adv. Eng. Mater., Volume 6 (2004) no. 5, pp. 290-297
[20] 50 tesla pulsed magnets using a copper conductor externally reinforced with stainless steel, IEEE Trans. Magn., Volume 24 (1988), pp. 1055-1058
[21] Cu nanowhiskers embedded in Nb nanotubes inside a multiscale Cu matrix: The way to reach extreme mechanical properties in high strength conductors, Scr. Mater., Volume 57 (2007) no. 3, pp. 245-248
[22] The nanostructured high strength high conductivity Cu matrix composites with different BCC metals strengthening filaments, IEEE Trans. Appl. Supercond., Volume 20 ( June 2010 ) no. 3
[23] High strength, high conductivity microcomposite Cu–Nb wires with cross sections in the range of 0.01–100 mm2, IEEE Trans. Appl. Supercond., Volume 18 ( June 2008 ) no. 2, pp. 616-619
[24] Development of CuAg alloys conductor for high field magnet, IEEE Trans. Magn., Volume 30 ( July 1994 ) no. 4, pp. 1891-1894
[25] The K.U. Leuven pulsed high magnetic field facility, Physica B, Volume 201 (1994), pp. 542-545
[26] Design and performance of the first dual coil magnet at the WHMFC, J. Low Temp. Phys. (2012) | DOI
[27] Magnet-technology development at the Dresden High Magnetic Field Laboratory, J. Low Temp. Phys. (2012) | DOI
[28] Assembly, commissioning and operation of the NHMFL 100 Tesla multi-pulse magnet system, IEEE Trans. Appl. Supercond., Volume 18 ( June 2008 ) no. 2, pp. 587-591
[29] J. Béard, J. Billette, M. Suleiman, P. Frings, W. Knafo, G. Scheerer, F. Duc, D. Vignolles, M. Nardone, A. Zitouni, P. Delescluse, J.-M. Lagarrigue, F. Giquel, B. Griffe, N. Bruyant, J.-P. Nicolin, G.L.J.A. Rikken, R.B. Lyubovskii, G.V. Shilov, E.I. Zhilyaeva, R.N. Lyubovskaya, A. Audouard, High frequency magnetic oscillations of the organic metal in pulsed magnetic field of up to , Eur. Phys. J. Appl. Phys., . | DOI
[30] New pulsed-magnets for 100 T, long-pulse and diffraction measurements, J. Phys.: Conf. Ser., Volume 51 (2006), p. 522
[31] The BMV experiment: a novel apparatus to study the propagation of light in a transverse magnetic field, Eur. Phys. J. D, Volume 46 (2008), pp. 323-333
[32] et al. Magnetic linear birefringence measurements using pulsed fields, Phys. Rev. A, Volume 85 (2012), p. 013837
[33] SEISM: a 60 GHz cusp electron cyclotron resonance ion source, The 13th International Conference on Ion Sources (ICISʼ09), US (2009) (Rev. Sci. Instrum.), Volume 81 (2010), p. 02B314
[34] Design study of high field resistive magnets for diffraction experiments, IEEE Trans. Appl. Supercond., Volume 20 (2010), pp. 664-667
[35] M. Marie-Jeanne, J. Angot, P. Balint, C. Fourel, G. Freche, J. Giraud, J. Jacob, T. Lamy, L. Latrasse, P. Sole, P. Sortais, T. Thuillier, F. Debray, C. Trophime, S. Veys, C. Daversin, V. Zorin, I. Izotov, V. Skalyga, in: Proceedings of ECRIS 2012, Sydney, Australia, September 2012, pp. 25–28, http://www.jacow.org/ (WEZO01).
[36] Synchrotron x-ray powder diffraction studies in pulsed magnetic fields, Rev. Sci. Instrum., Volume 77 (2006), p. 063903
Cité par Sources :
Commentaires - Politique