[Graphène sous champ magnétique intense]
Les nano-matériaux à base de carbone, tels que le graphène et les nanotubes de carbone, représentent un domaine de recherche fascinant dédié à lʼexploration de leurs propriétés physiques et électroniques remarquables. Ces matériaux ne sont pas que des curiosités pour les physiciens, ils sont aussi très prometteurs pour des applications pratiques et ont même été suggérés comme composants élémentaires de lʼélectronique du futur. Dans le cas du graphène, son potentiel est déjà exploité dans le domaine de lʼopto-électronique. En effet, de récentes avancées technologiques ont permis son intégration dans des cellules photo-voltaïques, dans des lasers ultra-rapides, des écrans tactiles ou encore des photo-détecteurs. Bien que la technologie photo-voltaïque soit encore dominée par lʼutilisation du silicium, le graphene serait susceptible de le remplacer à terme. Cependant, avant que de telles recherches appliquées ne débutent, il fut nécessaire de découvrir et de démontrer le potentiel des nano-objets à base de carbone, ce qui constitue le rôle de la recherche fondamentale. Dans ce contexte, lʼapplication dʼun champ magnétique externe se révèle extrêmement utile afin de sonder leurs propriétés fondamentales car il agit tel un paramètre ajustable qui modifie leurs structures de bande électronique. Afin dʼentrevoir ces changements, il est nécessaire dʼutiliser des champs magnétiques très intenses, soit continus soit pulsés en fonction des contraintes de lʼexpérience. Dans cet article, nous passons en revue quelques une des expériences notables réalisées sur des nano-objets uniques et dans des conditions extrêmes de température et de champ magnétique. Nous focaliserons notre discussion sur les réalisations expérimentales de magnéto-optique et de magnéto-transport qui ont permis de mieux caractériser la quantification en niveaux de Landau du spectre énergétique des électrons de Dirac dans le graphène et le graphite aminci.
Carbon-based nano-materials, such as graphene and carbon nanotubes, represent a fascinating research area aiming at exploring their remarkable physical and electronic properties. These materials not only constitute a playground for physicists, they are also very promising for practical applications and are envisioned as elementary bricks of the future of the nano-electronics. As for graphene, its potential already lies in the domain of opto-electronics where its unique electronic and optical properties can be fully exploited. Indeed, recent technological advances have demonstrated its effectiveness in the fabrication of solar cells and ultra-fast lasers, as well as touch-screens and sensitive photo-detectors. Although the photo-voltaic technology is now dominated by silicon-based devices, the use of graphene could very well provide higher efficiency. However, before the applied research to take place, one must first demonstrates the operativeness of carbon-based nano-materials, and this is where the fundamental research comes into play. In this context, the use of magnetic field has been proven extremely useful for addressing their fundamental properties as it provides an external and adjustable parameter which drastically modifies their electronic band structure. In order to induce some significant changes, very high magnetic fields are required and can be provided using both DC and pulsed technology, depending of the experimental constraints. In this article, we review some of the challenging experiments on single nano-objects performed in high magnetic and low temperature. We shall mainly focus on the high-field magneto-optical and magneto-transport experiments which provided comprehensive understanding of the peculiar Landau level quantization of the Dirac-type charge carriers in graphene and thin graphite.
Mot clés : Graphène, Graphite, Champ magnétique
Milan Orlita 1, 2 ; Walter Escoffier 3 ; Paulina Plochocka 3 ; Bertrand Raquet 3 ; Uli Zeitler 4
@article{CRPHYS_2013__14_1_78_0, author = {Milan Orlita and Walter Escoffier and Paulina Plochocka and Bertrand Raquet and Uli Zeitler}, title = {Graphene in high magnetic fields}, journal = {Comptes Rendus. Physique}, pages = {78--93}, publisher = {Elsevier}, volume = {14}, number = {1}, year = {2013}, doi = {10.1016/j.crhy.2012.11.003}, language = {en}, }
TY - JOUR AU - Milan Orlita AU - Walter Escoffier AU - Paulina Plochocka AU - Bertrand Raquet AU - Uli Zeitler TI - Graphene in high magnetic fields JO - Comptes Rendus. Physique PY - 2013 SP - 78 EP - 93 VL - 14 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2012.11.003 LA - en ID - CRPHYS_2013__14_1_78_0 ER -
Milan Orlita; Walter Escoffier; Paulina Plochocka; Bertrand Raquet; Uli Zeitler. Graphene in high magnetic fields. Comptes Rendus. Physique, Volume 14 (2013) no. 1, pp. 78-93. doi : 10.1016/j.crhy.2012.11.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.11.003/
[1] Electric field effect in atomically thin carbon films, Science, Volume 306 (2004), p. 666
[2] The rise of graphene, Nat. Mater., Volume 6 (2007), p. 183
[3] The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), p. 109
[4] Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005), p. 197
[5] Experimental observation of the quantum Hall effect and Berryʼs phase in graphene, Nature, Volume 438 (2005), p. 201
[6] Unconventional quantum Hall effect and Berryʼs phase of 2π in bilayer graphene, Nat. Phys., Volume 2 (2006), p. 177
[7] Infrared spectroscopy of Landau levels of graphene, Phys. Rev. Lett., Volume 98 (2007), p. 197403
[8] Cyclotron resonance in bilayer graphene, Phys. Rev. Lett., Volume 100 (2008), p. 087403
[9] Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy, Phys. Rev. Lett., Volume 102 (2009), p. 037403
[10] Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett., Volume 96 (2006), p. 136806
[11] Quantum hall states near the charge-neutral Dirac point in graphene, Phys. Rev. Lett., Volume 99 (2007), p. 106802
[12] Symmetry breaking in the zero-energy Landau level in bilayer graphene, Phys. Rev. Lett., Volume 104 (2010), p. 066801
[13] Room-temperature quantum hall effect in graphene, Science, Volume 315 (2007), p. 1379
[14] Quantum-hall activation gaps in graphene, Phys. Rev. Lett., Volume 99 (2007), p. 206803
[15] Scaling of the quantum hall plateau–plateau transition in graphene, Phys. Rev. B, Volume 80 (2009), p. 241411
[16] Gap opening in the zeroth Landau level of graphene, Phys. Rev. B, Volume 80 (2009), p. 201403
[17] High-field electronic properties of graphene, J. Low Temp. Phys., Volume 159 (2010), p. 238
[18] Multicomponent fractional quantum hall effect in graphene, Nat. Phys., Volume 7 (2011), p. 693
[19] The band theory of graphite, Phys. Rev., Volume 71 (1947), p. 622
[20] Landau-level degeneracy and quantum hall effect in a graphite bilayer, Phys. Rev. Lett., Volume 96 (2006), p. 086805
[21] Band structure of graphite and de Haas–van Alphen effect, Phys. Rev., Volume 108 (1957), p. 612
[22] Landau level spectroscopy of ultrathin graphite layers, Phys. Rev. Lett., Volume 97 (2006), p. 266405
[23] New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett., Volume 45 (1980), p. 494
[24] Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B, Volume 108 (2004), p. 19912
[25] Epitaxial graphene, Solid State Commun., Volume 143 (2007), p. 92
[26] Magneto-spectroscopy of epitaxial graphene, Int. J. Mod. Phys. B, Volume 21 (2007), p. 1145
[27] Magnetospectroscopy of epitaxial few-layer graphene, Solid State Commun., Volume 143 (2007), p. 123
[28] Cyclotron resonance study of the electron and hole velocity in graphene monolayers, Phys. Rev. B, Volume 76 (2007), p. 081406R
[29] Anomalous absorption line in the magneto-optical response of graphene, Phys. Rev. Lett., Volume 98 (2007), p. 157402
[30] Optical and magneto-optical far-infrared properties of bilayer graphene, Phys. Rev. B, Volume 75 (2007), p. 155430
[31] Dirac electronic states in graphene systems: optical spectroscopy studies, Semicond. Sci. Technol., Volume 25 (2010), p. 063001
[32] Cyclotron resonance and quasiparticles, AIP Conf. Proc., Volume 772 (2005), p. 3
[33] Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett., Volume 101 (2008), p. 267601
[34] How perfect can graphene be?, Phys. Rev. Lett., Volume 103 (2009), p. 136403
[35] High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy, Phys. Rev. Lett., Volume 100 (2008), p. 087401
[36] Fine structure constant defines visual transparency of graphene, Science, Volume 320 (2008), p. 1308
[37] Measurement of the optical conductivity of graphene, Phys. Rev. Lett., Volume 101 (2008), p. 196405
[38] Magneto-optics of bilayer inclusions in multilayered epitaxial graphene on the carbon face of sic, Phys. Rev. B, Volume 83 (2011), p. 125302
[39] Why multilayer graphene on 4h-sic(000) behaves like a single sheet of graphene, Phys. Rev. Lett., Volume 100 (2008), p. 125504
[40] Dirac cones reshaped by interaction effects in suspended graphene, Nat. Phys., Volume 7 (2012), p. 701
[41] Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene, Phys. Rev. Lett., Volume 107 (2011), p. 216603
[42] Quantum transport in two-dimensional graphite system, J. Phys. Soc. Jpn., Volume 67 (1998), p. 2421
[43] Dynamical conductivity and zero-mode anomaly in honeycomb lattices, J. Phys. Soc. Jpn., Volume 71 (2002), p. 1318
[44] Measurement of scattering rate and minimum conductivity in graphene, Phys. Rev. Lett., Volume 99 (2007), p. 246803
[45] Slowing hot-carrier relaxation in graphene using a magnetic field, Phys. Rev. B, Volume 80 (2009), p. 245415
[46] Carrier relaxation in epitaxial graphene photoexcited near the Dirac point, Phys. Rev. Lett., Volume 107 (2011), p. 237401
[47] Cyclotron radiation and emission in graphene, Phys. Rev. B, Volume 78 (2008), p. 073406
[48] Cyclotron resonance effects in graphite, Phys. Rev., Volume 103 (1956), p. 1586
[49] Location of electron and hole carriers in graphite from laser magnetoreflection data, Phys. Rev. Lett., Volume 20 (1969), p. 1292
[50] Minority carriers in graphite and the h-point magnetoreflection spectra, Phys. Rev. B, Volume 15 (1977), p. 4077
[51] Dirac fermions at the h point of graphite: Magnetotransmission studies, Phys. Rev. Lett., Volume 100 (2008), p. 136403
[52] Magneto-transmission as a probe of Dirac fermions in bulk graphite, J. Phys.: Condens. Matter, Volume 20 (2008), p. 454223
[53] Magneto-transmission of multi-layer epitaxial graphene and bulk graphite: A comparison, Solid State Commun., Volume 149 (2009), p. 1128
[54] Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer, Phys. Rev. Lett., Volume 102 (2009), p. 166401
[55] Cyclotron motion in the vicinity of a Lifshitz transition in graphite, Phys. Rev. Lett., Volume 108 (2012), p. 017602
[56] Interaction-driven spectrum reconstruction in bilayer graphene, Science, Volume 333 (2011), p. 860
[57] High-field magnetotransmission investigation of natural graphite, Phys. Rev. B, Volume 83 (2011), p. 073401
[58] Origin of electron–hole asymmetry in graphite and graphene, Phys. Rev. B, Volume 85 (2012), p. 245410
[59] Few-layer graphene on sic, pyrolitic graphite, and graphene: A Raman scattering study, Appl. Phys. Lett., Volume 92 (2008), p. 011914
[60] Thermal conductivity of graphene in corbino membrane geometry, ACS Nano, Volume 4 (2010), p. 1889
[61] Tuning the electron–phonon coupling in multilayer graphene with magnetic fields, Phys. Rev. Lett., Volume 103 (2009), p. 186803
[62] Effect of a magnetic field on the two-phonon Raman scattering in graphene, Phys. Rev. B, Volume 81 (2010), p. 155436
[63] Probing the band structure of quadri-layer graphene with magneto-phonon resonance, New J. Phys., Volume 14 (2012), p. 095007
[64] Circular dichroism of magneto-phonon resonance in doped graphene, Phys. Rev. B, Volume 86 (2012), p. 205431
[65] Magnetic oscillation of optical phonon in graphene, J. Phys. Soc. Jpn., Volume 76 (2007), p. 024712
[66] Filling-factor-dependent magnetophonon resonance in graphene, Phys. Rev. Lett., Volume 99 (2007), p. 087402
[67] Magneto-Raman scattering of graphene on graphite: Electronic and phonon excitations, Phys. Rev. Lett., Volume 107 (2011), p. 036807
[68] Electronic excitations and electron–phonon coupling in bulk graphite through Raman scattering in high magnetic fields, Phys. Rev. B, Volume 84 (2011), p. 235138
[69] Polarization-resolved magneto-Raman scattering of graphenelike domains on natural graphite, Phys. Rev. B, Volume 85 (2012), p. 195406
[70] Signature of electronic excitations in the Raman spectrum of graphene, Phys. Rev. B, Volume 80 (2009), p. 241404
[71] Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene, Phys. Rev. B, Volume 82 (2010), p. 045405
[72] Observation of electronic Raman scattering in metallic carbon nanotubes, Phys. Rev. Lett., Volume 107 (2011), p. 157401
[73] Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene, Phys. Rev. B, Volume 82 (2010), p. 165305
[74] Cyclotron resonance and de Haas–van Alphen oscillations of an interacting electron gas, Phys. Rev., Volume 123 (1961), p. 1242
[75] Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets, Phys. Rev. B, Volume 84 (2011), p. 045429
[76] Drude conductivity of Dirac fermions in graphene, Phys. Rev. B, Volume 83 (2011), p. 165113
[77] Classical to quantum crossover of the cyclotron resonance in graphene: A study of the strength of intraband absorption, New J. Phys., Volume 14 (2012), p. 095008
[78] Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene, Nano Lett., Volume 12 (2012), p. 2470
[79] From laterally modulated two-dimensional electron gas towards artificial graphene, New J. Phys., Volume 14 (2012), p. 053002
[80] Landau level spectra and the quantum Hall effect of multilayer graphene, Phys. Rev. B, Volume 83 (2011), p. 165443
[81] Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric, Appl. Phys. Lett., Volume 94 (2009), p. 062107
[82] A self-consistent theory for graphene transport, P. N. A. S., Volume 104 (2007), p. 18392
[83] Electron–hole coexistence in disordered graphene probed by high-field magneto-transport, New J. Phys., Volume 12 (2010), p. 083006
[84] Impact of disorder on the quantum hall plateau in graphene, Phys. Rev. B, Volume 82 (2010), p. 121401
[85] Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene, Phys. Rev. B, Volume 80 (2009), p. 235402
[86] Anomalously large conductance fluctuations in weakly disordered graphene, EPL (Europhys. Lett.), Volume 79 (2007), p. 57003
[87] Integer quantum hall effect in trilayer graphene, Phys. Rev. Lett., Volume 107 (2011), p. 126806
[88] Chiral decomposition in the electronic structure of graphene multilayers, Phys. Rev. B, Volume 77 (2008), p. 155416
[89] Intrinsic Zeeman effect in graphene, J. Phys. Soc. Jpn., Volume 76 (2007), p. 094701
[90] Spontaneous quantum hall states in chirally stacked few-layer graphene systems, Phys. Rev. Lett., Volume 106 (2011), p. 156801
[91] Quantum hall effect and Landau-level crossing of Dirac fermions in trilayer graphene, Nat. Phys., Volume 7 (2011), p. 621
[92] The experimental observation of quantum hall effect of chiral quasiparticles in trilayer graphene, Nat. Phys., Volume 7 (2011), p. 953
[93] Raman imaging of graphene, Solid State Commun., Volume 143 (2007), p. 44
[94] Electronic states and Landau levels in graphene stacks, Phys. Rev. B, Volume 73 (2006), p. 245426
[95] Stacking faults, bound states, and quantum hall plateaus in crystalline graphite, Phys. Rev. B, Volume 78 (2008), p. 245416
[96] Edge magnetotransport fingerprints in disordered graphene nanoribbons, Phys. Rev. B, Volume 82 (2010), p. 041413
[97] Band structure of graphite, Phys. Rev., Volume 109 (1958), p. 272
[98] Electron energy band structure and electronic properties of rhombohedral graphite, Carbon, Volume 7 (1969), p. 425
[99] Parity and valley degeneracy in multilayer graphene, Phys. Rev. B, Volume 81 (2010), p. 115315
[100] Dependence of band structures on stacking and field in layered graphene, Solid State Commun., Volume 142 (2007), p. 123
[101] Interlayer screening effect in graphene multilayers with aba and abc stacking, Phys. Rev. B, Volume 81 (2010), p. 125304
[102] Graphene transistors, Nat. Nanotechnol., Volume 5 (2010), p. 487
[103] Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett., Volume 98 (2007), p. 206805
[104] Charge transport in disordered graphene-based low dimensional materials, Nano Res., Volume 1 (2008), p. 361
[105] Electrical observation of subband formation in graphene nanoribbons, Phys. Rev. B, Volume 78 (2008), p. 161409
[106] Quantized conductance of a suspended graphene nanoconstruction, Nat. Phys., Volume 7 (2011), p. 697
[107] Unveiling the magnetic structure of graphene nanoribbons, Phys. Rev. Lett., Volume 107 (2011), p. 086601
[108] Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B, Volume 59 (1999), p. 8271
[109] Electronic transport properties of nanographite ribbon junctions, Phys. Rev. B, Volume 64 (2001), p. 125428
Cité par Sources :
Commentaires - Politique