Comptes Rendus
The grain–grain–liquid triple phase line during solidification of multi-crystalline silicon
[La ligne triple grain–grain–liquide lors de la solidification du silicium multi-cristallin]
Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 185-191.

La morphologie, facettée ou rugueuse, de lʼinterface solide–liquide lors de la solidification du silicium multi-cristallin est discutée sur la base de considérations cristallographiques, énergétiques et cinétiques classiques. Ceci permet dʼétablir des diagrammes donnant la structure de lʼinterface de solidification en fonction des paramètres du procédé. On montre que la structure des lignes triples grain–grain–liquide détermine la direction des joints de grains de façon quantitative, ce qui permet dʼenvisager la modélisation numérique de la structure de grains de lingots de silicium photovoltaïque en fonction des conditions de croissance.

The rough or faceted morphology of the solid–liquid interface during solidification of multi-crystalline silicon is discussed in terms of classical crystallographic, energetic and kinetic considerations. This allows establishing diagrams of the interface structure as a function of process parameters. It is shown that the grain–grain–liquid triple phase line structures determine quantitatively the direction of growth of the grain boundaries, then opening the door to the numerical modeling of the grain structure of photovoltaic silicon ingots as a function of growth conditions.

Publié le :
DOI : 10.1016/j.crhy.2012.12.003
Keywords: Solidification, Triple line, Grain boundary, Grain structure, Silicon, Photovoltaic
Mot clés : Solidification, Ligne triple, Joint de grains, Grains, Silicium, Photovoltaïque
Thierry Duffar 1 ; Amal Nadri 1

1 SIMaP–EPM, Grenoble-INP–CNRS–UJF, BP 75, 38402 Saint Martin dʼHéres cedex, France
@article{CRPHYS_2013__14_2-3_185_0,
     author = {Thierry Duffar and Amal Nadri},
     title = {The grain{\textendash}grain{\textendash}liquid triple phase line during solidification of multi-crystalline silicon},
     journal = {Comptes Rendus. Physique},
     pages = {185--191},
     publisher = {Elsevier},
     volume = {14},
     number = {2-3},
     year = {2013},
     doi = {10.1016/j.crhy.2012.12.003},
     language = {en},
}
TY  - JOUR
AU  - Thierry Duffar
AU  - Amal Nadri
TI  - The grain–grain–liquid triple phase line during solidification of multi-crystalline silicon
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 185
EP  - 191
VL  - 14
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2012.12.003
LA  - en
ID  - CRPHYS_2013__14_2-3_185_0
ER  - 
%0 Journal Article
%A Thierry Duffar
%A Amal Nadri
%T The grain–grain–liquid triple phase line during solidification of multi-crystalline silicon
%J Comptes Rendus. Physique
%D 2013
%P 185-191
%V 14
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2012.12.003
%G en
%F CRPHYS_2013__14_2-3_185_0
Thierry Duffar; Amal Nadri. The grain–grain–liquid triple phase line during solidification of multi-crystalline silicon. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 185-191. doi : 10.1016/j.crhy.2012.12.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.12.003/

[1] T.F. Ciszek, T.H. Wang, R.W. Burrows, X. Wu, J. Alleman, T. Bekkedahl, Y.S. Tsuo, in: Proc. 23rd PV Specialist Conf., Louisville, KY, IEEE 0-7803-1220-1, 1993, pp. 101–105.

[2] J. Nelson The Physics of Solar Cells, Imperial College Press, London, 2003 (ISBN: 1-86094-340-3)

[3] S. Dubois, PhD thesis, Univ. Paul Cézanne-Marseille III, 2007 (in French).

[4] T. Duffar Recent Res. Devel. Cryst. Growth, 5 (2010), pp. 61-111

[5] N. Mangelinck-Noel; T. Duffar J. Cryst. Growth, 311 (2008), pp. 20-25

[6] M. Beaudhuin; T. Duffar; M. Lemiti; K. Zaidat J. Cryst. Growth, 319 (2011), pp. 106-113

[7] A. Voigt; E. Wolf; H.P. Strunk Mater. Sci. Eng. B, 54 (1998), pp. 202-206

[8] B. Gallien; Th. Duffar; S. Lay; F. Robaut J. Cryst. Growth, 318 (2011), pp. 208-211

[9] T. Duffar; A. Nadri Scr. Mater., 62 (2010), pp. 955-960

[10] K.A. Jackson Liquid Metals and Solidification, ASM, Cleveland, 1958, pp. 174-186

[11] P. Rudolph; M. Czupalla; B. Lux; F. Kirscht; Ch. Frank-Rotsch; W. Miller; M. Albrecht J. Cryst. Growth, 318 (2011), pp. 249-254

[12] K.M. Beatty; K.A. Jackson J. Cryst. Growth, 211 (2000), pp. 13-17

[13] D. Buta; M. Asta; J.J. Hoyt J. Chem. Phys., 127 (2007), p. 074703

[14] W. Miller J. Cryst. Growth, 325 (2011), pp. 101-103

[15] V.V. Voronkov Sov. Phys. Crystallogr., 17 (1973), pp. 807-813 (trans. from Kristallografiya 17 (1972) 909–917)

[16] R.P. Liu; T. Volkmann; D.M. Herlach Acta Mater., 49 (2001), pp. 439-444

[17] Z. Jian; K. Kuribayashi; W. Jie; F. Chang Acta Mater., 54 (2006), pp. 3227-3232

[18] D.T.J. Hurle J. Cryst. Growth, 147 (1995), pp. 239-250

[19] P.D. Bristowe Properties of Crystalline Si (R. Hull, ed.), EMIS, 1999, pp. 299-308

[20] A.V. Artemyev; L.E. Polyak; L.K. Fionova J. Phys., Colloq., 51 (1990) (C1/71–C1/76)

[21] M. Kohyama; R. Yamamoto; M. Doyama Phys. Status Solidi (b), 138 (1986), pp. 387-397

[22] A. Otsuki Acta Mater., 49 (2001), pp. 1737-1745

[23] H. Sens, PhD thesis, Institut National Polytechnique de Grenoble, 1988 (in French).

[24] P. Apte; X.C. Zeng Appl. Phys. Lett., 92 (2008), p. 221903

[25] L. Priester Les joints de grains, de la théorie à lʼingénierie, EDP Sciences, Paris, 2006 (in French)

[26] V.V. Voronkov Sov. Phys. Crystallogr., 19 (1975), pp. 573-577 (trans. from Kristallografiya 19 (1974) 922–929)

[27] H. Miyahara; S. Nara; M. Okugawa; K. Ogi Mater. Trans., 5 (2005), pp. 935-943

[28] G.F. Bolling; W.A. Tiller J. Appl. Phys., 31 (1960), pp. 1345-1350

[29] H.A. Atwater; C.V. Thompson; H.I. Smith J. Mater. Res., 3 (1988), pp. 1232-1237

[30] I. Steinbach; F. Pezzolla; R. Prieler 7th MCWASP Proc. (M. Cross; J. Campbell, eds.), The 3M Soc., 1995, pp. 695-703

[31] T. Surek; C.B. Hari Rao; J.C. Swartz; L.C. Garone J. Electrochem. Soc., 124 (1977), pp. 112-123

[32] E.A. Katz; L.E. Polyak J. Cryst. Growth, 172 (1997), pp. 115-119

[33] A. Mitric, PhD thesis, Grenoble Institute of Technology, 29 May 2006 (in French).

[34] A. Tandjaoui, N. Mangelinck-Noel, G. Reinhart, B. Billia, X. Guichard, C. R. Physique 14 (2013), , . | DOI

[35] T. Börzönyi; S. Akamatsu Phys. Rev. E, 66 (2002), p. 051709

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Twinning occurrence and grain competition in multi-crystalline silicon during solidification

Amina Tandjaoui; Nathalie Mangelinck-Noel; Guillaume Reinhart; ...

C. R. Phys (2013)


Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting

Philippe Jarry; Michel Rappaz

C. R. Phys (2018)